Gastric Cancer: Overexpression of Hypoxia-Inducible Factor 1 as a Prognostic Factor

  • Yoshihiro Kakeji
  • Eiji Oki
  • Noriaki Sadanaga
  • Masaru Morita
  • Yoshihiko Maehara
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 3)

Despite a worldwide decline in incidence, gastric cancer remains the fourth most common cancer and the second most frequent cause of death from cancer, accounting for 10.4% of cancer deaths worldwide (Parkin, 2004). Though the prognosis of resectable gastric cancer remains fair, the treatment of advanced or recurrent gastric cancer is still far from satisfactory. Currently, the only curative treatment for gastric cancer is a surgical resection of the primary tumor with an appropriate lymphadenectomy because the disease is considered to be resistant to chemotherapy and radiotherapy (Griffiths et al., 2005). Patients with early gastric cancer are in the minority and the disease typically presents at an advanced stage, which often precludes a curative surgical resection. Even in patients who have an apparently curative resection, approximately, a quarter of all individuals tend to progress and develop either recurrent or metastatic disease.


Gastric Cancer Early Gastric Cancer Vascular Endothelial Cell Growth Factor Vascular Endothelial Cell Growth Factor Noncardia Gastric Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruick, R.K. 2000. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. U.S.A. 97: 9082–9087.PubMedCrossRefGoogle Scholar
  2. Chen, D., Li, M., Luo, J., and Gu, W. 2003. Direct interactions between HIF-1α and Mdm2 modulate p53 function. J. Biol. Chem. 278: 13595–13598.PubMedCrossRefGoogle Scholar
  3. Chun, Y.S., Lee, K.H., Choi, E., Bae, S.Y., Yeo, E.J., Huang, L.E., Kim, M.S., and Park, J.W. 2003. Phorbol ester stimulates the nonhypoxic induction of a novel hypoxia-inducible factor 1 alpha isoform: implications for tumor promotion. Cancer Res. 63: 8700–8707.PubMedGoogle Scholar
  4. Delmas, C., End, D., Rochaix, P., Favre, G., Toulas, C., and Cohen-Jonathan, E. 2003. The farnesyl-transferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft. Clin. Cancer Res. 9: 6062–6068.PubMedGoogle Scholar
  5. Folkman, J. 1990. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82: 4–6.PubMedCrossRefGoogle Scholar
  6. Gray, M.J., Zhang, J., Ellis, L.M., Semenza, G.L., Evans, D.B., Watowich, S.S., and Gallick, G.E. 2005. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24: 3110–3120.PubMedCrossRefGoogle Scholar
  7. Griffiths, E.A., Pritchard, S.A., Welch, I.M., Price, P.M., and West, C.M. 2005. Is the hypoxia-inducible factor pathway important in gastric cancer? Eur. J. Cancer 41: 2792–2805.PubMedCrossRefGoogle Scholar
  8. Griffiths, E.A., Pritchard, S.A., Valentine, H.R., Whitchelo, N., Bishop, P.W., Ebert, M.P., Price, P.M., Welch, I.M., and West, C.M. 2007. Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. Br. J. Cancer 96: 95–103.PubMedCrossRefGoogle Scholar
  9. Hammond, E.M., and Giaccia, A.J. 2006. Hypoxia-inducible factor-1 and p53: friends, acquaintances, or strangers? Clin. Cancer Res. 12: 5007–5009.PubMedCrossRefGoogle Scholar
  10. Harris, A.L. 2002. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2: 38–47.PubMedCrossRefGoogle Scholar
  11. Hockel, M., and Vaupel, P. 2003. Oxygenation of cervix cancers: impact of clinical and pathological parameters. Adv. Exp. Med. Biol. 510: 31–35.PubMedGoogle Scholar
  12. Kaelin, Jr., W.G. 2002. How oxygen makes its presence felt. Genes Devel. 16: 1441–1445.PubMedCrossRefGoogle Scholar
  13. Kaluz, S., Kaluzova, M., and Stanbridge, E.J. 2006. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1 alpha C-terminal activation domain. Mol. Cell. Biol. 26: 5895–5907.PubMedCrossRefGoogle Scholar
  14. Kami, R., Dor, Y., Keshet, E., Meyuhas, O., and Levitzki, A. 2002. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1 alpha expression under normoxia. J. Biol. Chem. 277: 42919–42925.CrossRefGoogle Scholar
  15. Ke, Q., and Costa, M. 2006. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharm. 70: 1469–1480.CrossRefGoogle Scholar
  16. Kimbro, K.S., and Simons, J.W. 2006. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr. Relat. Cancer 13: 739–749.PubMedCrossRefGoogle Scholar
  17. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., Iyer, N., LaRusch, J., Pak, B., Taghavi, P., and Semenza, G.L. 2003. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 63: 1138–1143.PubMedGoogle Scholar
  18. Lim, J.H., Lee, E.S., You, H.J., Lee, J.W., Park, J.W., and Chun, Y.S. 2004. Ras-dependent induction of HIF-l alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Rasmediated tumor promotion. Oncogene 23: 9427–9431.PubMedCrossRefGoogle Scholar
  19. Luwor, R.B., Lu, Y., Li, X., Mendelsohn, J., and Fan, Z. 2005. The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. Oncogene 24: 4433–4441.PubMedCrossRefGoogle Scholar
  20. Mabjeesh, N.J., Escuin, D., LaVallee, T.M., Pribluda, V.S., Swartz, G.M., Johnson, M.S., Willard, M.T., Zhong, H., Simons, J.W., and Giannakakou, P. 2003. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIE. Cancer Cell 3: 363–375.PubMedCrossRefGoogle Scholar
  21. Maxwell, P.H., Dachs, G.U., Gleadle, J.M., Nicholls, L.G., Harris, A.L., Stratford, I.J., Hankinson, O., Pugh, C.W., and Ratcliffe, P.J. 1997. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. U.S.A. 94: 8104–8109.PubMedCrossRefGoogle Scholar
  22. Maxwell, P.H., Wiesener, M.S., Chang, G.-W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.PubMedCrossRefGoogle Scholar
  23. Mizokami, K., Kakeji, Y., Oda, S., Irie, K., Yonemura, T., Konishi, F., and Maehara, Y. 2006a. Clinicopathologic significance of hypoxia-inducible factor 1 alpha overexpression in gastric carcinomas. J. Surg. Oncol. 94: 149–154.PubMedCrossRefGoogle Scholar
  24. Mizokami, K., Kakeji, Y., Oda, S., and Maehara, Y. 2006b. Relationship of hypoxia-inducible factor 1á and p21WAF1/CIP1 expression to cell apoptosis and clinical outcome in patients with gastric cancer. World. J. Surg. Oncol. 4: 94.PubMedCrossRefGoogle Scholar
  25. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13: 9–22.PubMedGoogle Scholar
  26. Parkin, D.M. 2004. International variation. Oncogene 23: 6329–6340.PubMedCrossRefGoogle Scholar
  27. Schuler, M., and Green, D.R. 2001. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 29: 684–688.PubMedCrossRefGoogle Scholar
  28. Seagroves, T.N., Ryan, H.E., Lu, H., Wouters, B.G., Knapp, M., Thibault, P., Laderoute, K., and Johnson, R.S. 2001. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. 21: 3436–3444.PubMedCrossRefGoogle Scholar
  29. Semenza, G.L. 2002. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8: S62–S67.PubMedCrossRefGoogle Scholar
  30. Semenza, G.L. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3: 721–732.PubMedCrossRefGoogle Scholar
  31. Sumiyoshi, Y., Kakeji, Y., Egashira, A., Mizokami, K., Orita, H., and Maehara, Y. 2006. Overexpression of hypoxia-inducible factor 1α and p53 is a marker for an unfavorable prognosis in gastric cancer. Clin. Cancer Res. 12: 5112–5117.PubMedCrossRefGoogle Scholar
  32. Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., and Harris, A.L. 2000. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157: 411–421.PubMedGoogle Scholar
  33. Tan, C., de Noronha, R.G., Roecker, A.J., Pyrzynska, B., Khwaja, F., Zhang, Z., Zhang, H., Teng, Q., Nicholson, A.C., Giannakakou, P., Zhou, W., Olson, J.J., Pereira, M.M., Nicolaou, K.C., and Van Meir, E.G. 2005. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 65: 605–612.PubMedGoogle Scholar
  34. Vaupel, P. 2004. The role of hypoxia-induced factors in tumor progression. Oncologist 9: 10–17.PubMedCrossRefGoogle Scholar
  35. Volm, M., and Koomagi, R. 2000. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 20: 1527–1533.PubMedGoogle Scholar
  36. Wenger, R.H. 2002. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16: 1151–1162.PubMedCrossRefGoogle Scholar
  37. Yeo, E.J., Chun, Y.S., Cho, Y.S., Kim, J., Lee, J.C., Kim, M.S., and Park, J.W. 2003. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 95: 516–525.PubMedCrossRefGoogle Scholar
  38. Zagzag, D., Krishnamachary, B., Yee, H., Okuyama, H., Chiriboga, L., Ali, M.A., Melamed, J., and Semenza, G.L. 2005. Stromal cell-derived factor-1 alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res. 65: 6178–6188.PubMedCrossRefGoogle Scholar
  39. Zhou, J., Schmid, T., Schnitzer, S., and Brune, B. 2006. Tumor hypoxia and cancer progression. Cancer Lett. 237: 10–21.PubMedCrossRefGoogle Scholar
  40. Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., Gottschalk, A.R., Ryan, H.E., Johnson, R.S., Jefferson, A.B. Stokoe, D., and Giaccia, A.J. 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Devel. 14: 391–396.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Yoshihiro Kakeji
    • 1
  • Eiji Oki
    • 1
  • Noriaki Sadanaga
    • 1
  • Masaru Morita
    • 1
  • Yoshihiko Maehara
    • 1
  1. 1.Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations