Skip to main content

Electronic Structure of the Face-Centred Cubic MoO1.9 Phase Obtained Due to Reduction of Hydrogen Bronze H1.63MoO3

  • Conference paper
Carbon Nanomaterials in Clean Energy Hydrogen Systems

Abstract

The electronic structure of face-centred cubic (fcc) MoO x (x = 1.9) oxide derived due to reduction of hydrogen bronze H1.63MoO3 has been studied using the X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) methods. For comparison, the electronic structure of molybdenum trioxide, MoO3, and the H1.63MoO3 bronze was studied as well. The XES O Kα and Mo Lβ2,15 bands of fcc-MoO1.9 and XPS valence-band spectra of the MoO1.9, MoO3 and H1.63MoO3 compounds were derived. Band structure calculations of fcc-MoO2 have been fulfilled using the full-potential linearized augmented plane wave (FP-LAPW) method. The theoretical XES O Kα and Mo Lβ2,15 bands were calculated for fcc-MoO2 employing the above method. A rather good agreement of shapes of experimental and theoretical XES O Kα and Mo Lβ2,15 bands for fcc molybdenum dioxide has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kihlborg L. Least squares refinement of the crystal structure of molybdenum trioxide // Arkiv Kemi, 1963, 21: 357–364

    CAS  Google Scholar 

  2. Machiels C.J., Sleight A.W. Kinetic isotope effect in the selective oxidation reaction of methanol to formaldehyde over some molybdate catalysts // J. Catal., 1982, 76: 238–239

    Article  CAS  Google Scholar 

  3. Delmon B., Yates J.T. (editors) Transition-metal Oxides: Surface Chemistry and Catalysis, Studies in Surface Science and Catalysis. Amsterdam, Elsevier, 1989, 45

    Google Scholar 

  4. Yoshida S., Sakaki S., Kobayashi H. Electronic Processes in Catalysis: A Quantum Chemical Approach to Catalysis. New York, VCH, 1994

    Google Scholar 

  5. Monk P.M.S., Martimer R.J., Rossiensky D.R. Electrochromism: Fundamentals and Applications. Weinheim, VCH Verlagsgesellschaft, 1995

    Google Scholar 

  6. Granqvist C.G. Handbook of Inorganic Electrochromic Materials. Amsterdam, Elsevier, 1995

    Google Scholar 

  7. Andersson G., Magnéli A. On the crystal structure of molybdenum trioxide, // Acta Chem. Scand., 1950, 4: 793–797. a

    Article  CAS  Google Scholar 

  8. Schlenker C. (editor) Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides. Dordrecht, Kluwer, 1989

    Google Scholar 

  9. Solonin Yu.M. The structural aspects of hydrogen interaction with activated textured molybdenum trioxide layer // Int. J. Altern. Energ. Ecol., 2002, (1): 73–76

    Google Scholar 

  10. Khyzhun O.Yu., Strunskus T., Solonin Yu.M. XES, XPS and NEXAFS studies of the electronic structure of cubic MoO1.9 and H1.63MoO3 thick films // J. Alloy. Compd., 2004, 366: 54–60

    Article  CAS  Google Scholar 

  11. Blaha P., Schwarz K., Luitz J. WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties. Vienna, Technical University, 1999

    Google Scholar 

  12. Dubok V.A., Zhurakivsky E.A., Ivanchenko L.A., Podrushnyak E.P., Ulyanchich N.V., Khyzhun O.Yu. On some crystalline-structure defects in microcrystals of hydroxyapatite // Metallofiz. Noveishie Tekhnol., 1997, 13(3): 32–38

    Google Scholar 

  13. Khyzhun O.Yu., Zaulychny Ya.V., Zhurakovsky E.A. Electronic structure of tungsten and molybdenum germanides synthesized at high pressures // J. Alloy. Compd., 1996, 244: 107–112

    Article  CAS  Google Scholar 

  14. Perdew J.P., Burke S., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett., 1996, 77: 3865–3868

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Blöchl P.E., Jepsen O., Andersen O.K. Improved tetrahedron method for Brillouin-zone integrations // Phys. Rev. B, 1994, 49: 16223–16233

    Article  ADS  Google Scholar 

  16. Murnaghan F.D. The compressibility of media under extreme pressures // Proc. Natl. Acad. Sci. USA, 1944, 30: 244–247

    Article  MATH  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  17. Khyzhun O.Yu., Bekenev V.L., Solonin Yu.M. Electronic structure of cubic MoO x nanoparticles: experimental studies and band-structure calculations // Nanosistemy, Nano-materialy, Nanotechnologii, 2007, 5: 599–608. (in Russian)

    Google Scholar 

  18. Blokhin M.A., Shveitser I.G. X-Ray Spectroscopy Handbook. Moscow, Nauka, 1982 (in Russian)

    Google Scholar 

  19. Khyzhun O.Yu. XPS, XES and XAS studies of the electronic structure of tungsten oxides // J. Alloy. Compd., 2000, 305: 1–6

    Article  CAS  Google Scholar 

  20. Khyzhun O.Yu., Solonin Yu.M. Electronic structure of the monoclinic and hexagonal trioxides of tungsten and hexagonal hydrogen tungsten bronze H0.24WO3 // Powder Metall. Met. Ceram., 2000, 39: 287–294

    Article  CAS  Google Scholar 

  21. Solonin Yu.M., Khyzhun O.Yu., Graivoronskaya E.A. Nonstoichiometric tungsten oxide based on hexagonal WO3 // Cryst. Growth Des., 2001, 1(6): 473–477

    Article  CAS  Google Scholar 

  22. Colton R.J., Guzman A.M., Rabalais J.W. Electrochromism in some thin-film transition metal oxides characterized by x-ray electron spectroscopy // J. Appl. Phys., 1978, 49: 409–416

    Article  ADS  CAS  Google Scholar 

  23. Khyzhun O.Yu., Solonin Yu.M., Dobrovolsky V.D. Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies // J. Alloy. Compd., 2001, 320: 1–6

    Article  CAS  Google Scholar 

  24. Fleisch T.H., Mains G.J. An XPS study of the UV reduction and photochromism of MoO3and WO3 // J. Chem. Phys., 1982, 76: 780–786

    Article  ADS  CAS  Google Scholar 

  25. Eyert V., Horny R., Höck K.-H., Horn S. Embedded Peierls instability and the electronic structure of MoO2 // J. Phys.-Condens. Mat., 2000, 12: 4923–4946

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Khyzhun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Khyzhun, O.Y., Bekenev, V.L., Solonin, Y.M. (2008). Electronic Structure of the Face-Centred Cubic MoO1.9 Phase Obtained Due to Reduction of Hydrogen Bronze H1.63MoO3 . In: Baranowski, B., Zaginaichenko, S.Y., Schur, D.V., Skorokhod, V.V., Veziroglu, A. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8898-8_81

Download citation

Publish with us

Policies and ethics