Electronic Structure of the Face-Centred Cubic MoO1.9 Phase Obtained Due to Reduction of Hydrogen Bronze H1.63MoO3

  • O. Yu. Khyzhun
  • V. L. Bekenev
  • Yu. M. Solonin
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


The electronic structure of face-centred cubic (fcc) MoO x (x = 1.9) oxide derived due to reduction of hydrogen bronze H1.63MoO3 has been studied using the X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) methods. For comparison, the electronic structure of molybdenum trioxide, MoO3, and the H1.63MoO3 bronze was studied as well. The XES O Kα and Mo Lβ2,15 bands of fcc-MoO1.9 and XPS valence-band spectra of the MoO1.9, MoO3 and H1.63MoO3 compounds were derived. Band structure calculations of fcc-MoO2 have been fulfilled using the full-potential linearized augmented plane wave (FP-LAPW) method. The theoretical XES O Kα and Mo Lβ2,15 bands were calculated for fcc-MoO2 employing the above method. A rather good agreement of shapes of experimental and theoretical XES O Kα and Mo Lβ2,15 bands for fcc molybdenum dioxide has been obtained.


X-ray emission spectroscopy (XES) X-ray photoelectron spectroscopy (XPS) electronic structure band-structure calculations molybdenum oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kihlborg L. Least squares refinement of the crystal structure of molybdenum trioxide // Arkiv Kemi, 1963, 21: 357–364Google Scholar
  2. 2.
    Machiels C.J., Sleight A.W. Kinetic isotope effect in the selective oxidation reaction of methanol to formaldehyde over some molybdate catalysts // J. Catal., 1982, 76: 238–239CrossRefGoogle Scholar
  3. 3.
    Delmon B., Yates J.T. (editors) Transition-metal Oxides: Surface Chemistry and Catalysis, Studies in Surface Science and Catalysis. Amsterdam, Elsevier, 1989, 45 Google Scholar
  4. 4.
    Yoshida S., Sakaki S., Kobayashi H. Electronic Processes in Catalysis: A Quantum Chemical Approach to Catalysis. New York, VCH, 1994Google Scholar
  5. 5.
    Monk P.M.S., Martimer R.J., Rossiensky D.R. Electrochromism: Fundamentals and Applications. Weinheim, VCH Verlagsgesellschaft, 1995Google Scholar
  6. 6.
    Granqvist C.G. Handbook of Inorganic Electrochromic Materials. Amsterdam, Elsevier, 1995Google Scholar
  7. 7.
    Andersson G., Magnéli A. On the crystal structure of molybdenum trioxide, // Acta Chem. Scand., 1950, 4: 793–797. aCrossRefGoogle Scholar
  8. 8.
    Schlenker C. (editor) Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides. Dordrecht, Kluwer, 1989Google Scholar
  9. 9.
    Solonin Yu.M. The structural aspects of hydrogen interaction with activated textured molybdenum trioxide layer // Int. J. Altern. Energ. Ecol., 2002, (1): 73–76Google Scholar
  10. 10.
    Khyzhun O.Yu., Strunskus T., Solonin Yu.M. XES, XPS and NEXAFS studies of the electronic structure of cubic MoO1.9 and H1.63MoO3 thick films // J. Alloy. Compd., 2004, 366: 54–60CrossRefGoogle Scholar
  11. 11.
    Blaha P., Schwarz K., Luitz J. WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties. Vienna, Technical University, 1999Google Scholar
  12. 12.
    Dubok V.A., Zhurakivsky E.A., Ivanchenko L.A., Podrushnyak E.P., Ulyanchich N.V., Khyzhun O.Yu. On some crystalline-structure defects in microcrystals of hydroxyapatite // Metallofiz. Noveishie Tekhnol., 1997, 13(3): 32–38Google Scholar
  13. 13.
    Khyzhun O.Yu., Zaulychny Ya.V., Zhurakovsky E.A. Electronic structure of tungsten and molybdenum germanides synthesized at high pressures // J. Alloy. Compd., 1996, 244: 107–112CrossRefGoogle Scholar
  14. 14.
    Perdew J.P., Burke S., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett., 1996, 77: 3865–3868PubMedCrossRefADSGoogle Scholar
  15. 15.
    Blöchl P.E., Jepsen O., Andersen O.K. Improved tetrahedron method for Brillouin-zone integrations // Phys. Rev. B, 1994, 49: 16223–16233CrossRefADSGoogle Scholar
  16. 16.
    Murnaghan F.D. The compressibility of media under extreme pressures // Proc. Natl. Acad. Sci. USA, 1944, 30: 244–247MATHPubMedCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Khyzhun O.Yu., Bekenev V.L., Solonin Yu.M. Electronic structure of cubic MoOx nanoparticles: experimental studies and band-structure calculations // Nanosistemy, Nano-materialy, Nanotechnologii, 2007, 5: 599–608. (in Russian)Google Scholar
  18. 18.
    Blokhin M.A., Shveitser I.G. X-Ray Spectroscopy Handbook. Moscow, Nauka, 1982 (in Russian)Google Scholar
  19. 19.
    Khyzhun O.Yu. XPS, XES and XAS studies of the electronic structure of tungsten oxides // J. Alloy. Compd., 2000, 305: 1–6CrossRefGoogle Scholar
  20. 20.
    Khyzhun O.Yu., Solonin Yu.M. Electronic structure of the monoclinic and hexagonal trioxides of tungsten and hexagonal hydrogen tungsten bronze H0.24WO3 // Powder Metall. Met. Ceram., 2000, 39: 287–294CrossRefGoogle Scholar
  21. 21.
    Solonin Yu.M., Khyzhun O.Yu., Graivoronskaya E.A. Nonstoichiometric tungsten oxide based on hexagonal WO3 // Cryst. Growth Des., 2001, 1(6): 473–477CrossRefGoogle Scholar
  22. 22.
    Colton R.J., Guzman A.M., Rabalais J.W. Electrochromism in some thin-film transition metal oxides characterized by x-ray electron spectroscopy // J. Appl. Phys., 1978, 49: 409–416CrossRefADSGoogle Scholar
  23. 23.
    Khyzhun O.Yu., Solonin Yu.M., Dobrovolsky V.D. Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies // J. Alloy. Compd., 2001, 320: 1–6CrossRefGoogle Scholar
  24. 24.
    Fleisch T.H., Mains G.J. An XPS study of the UV reduction and photochromism of MoO3and WO3 // J. Chem. Phys., 1982, 76: 780–786CrossRefADSGoogle Scholar
  25. 25.
    Eyert V., Horny R., Höck K.-H., Horn S. Embedded Peierls instability and the electronic structure of MoO2 // J. Phys.-Condens. Mat., 2000, 12: 4923–4946CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • O. Yu. Khyzhun
    • 1
  • V. L. Bekenev
    • 1
  • Yu. M. Solonin
    • 1
  1. 1.Frantsevych Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations