• K. B. Gerasimov
  • I. G. Konstanchuck
  • S. A. Chizhik
  • J. -L. Bobet
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


In recent years the kinetics of hydrogenation/dehydrogenation of magnesium have been significantly improved by the introduction of new methods of fabrication of nanocrystalline magnesium-catalyst composites. However, the equilibrium hydrogen pressure for decomposition of nanocrystalline MgH2 was found to be somewhat lower than for conventional magnesium hydride. Moreover, the essential difference in equilibrium hydrogen pressure for absorption and for desorption of hydrogen by nanocrystalline magnesium was reported by many authors. This difference called “hysteresis” is a common phenomenon for hydrides, but it is not observed for magnesium powders with an ordinary particle size (more than 1 μm). The aim of the present work was to elucidate why the hysteresis arises in magnesium-hydrogen system with decreasing the particles size. It is shown, that the “hysteresis” observed in nanocrystalline magnesium is a seeming phenomenon, which is due to a hindered nucleation during hydriding at pressures closed to equilibrium. The pressures measured for desorption represent the real equilibrium. The plateau pressure of Mg + H2 ⃡ MgH2equilibrium is lower for nanocrystalline magnesium than that for conventional magnesium. This result is explained in terms of smaller surface energy of magnesium hydride in comparison with magnesium


hydrogen storage nanocrystalline magnesium gas-solid reactions hysteresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zaluski L, Zaluska A, Strom-Olsen JO. Nanocrystalline metal hydrides. J Alloy Compd1997, 253–254:70–79CrossRefGoogle Scholar
  2. 2.
    Zaluska A, Zaluski L, Strom-Olsen JO. Nanocrystalline magnesium for hydrogen storage. J Alloy Compd1999, 288:217–225CrossRefGoogle Scholar
  3. 3.
    Liang G, Huot J, Boily S, Van Neste A, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloy Compnd1999, 292:247–252CrossRefGoogle Scholar
  4. 4.
    Ma L-P, Wang P, Cheng H-M. Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3. J Alloy Compnd2007, 432:L1–L4CrossRefGoogle Scholar
  5. 5.
    Saita I, Toshima T, Tanda S, Akiyama T. Hydrogen storage property of MgH2 synthesized by hydriding chemical vapor deposition. J Alloy Compd2007, 446–447:80–83CrossRefGoogle Scholar
  6. 6.
    Gross KJ, Spatz P, Zuttel A, Schlapbach L. Mechanically milled Mg composites for hydrogen storage the transition to a steady state composition. J Alloy Compd1996, 240(1–2):206–223CrossRefGoogle Scholar
  7. 7.
    Gupta R., Agresti F., Lo Russo S., Maddolena A., Palade P., Principi G. Structure and hydrogen storage properties of MgH2 catalyzed with La2O3. J Alloy Compd2008, 450:310–313CrossRefGoogle Scholar
  8. 8.
    Dehouche Z, Djaozandry R, Huot J, Boily S, Goyette J, Bose TR, Schulz R. Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride. J Alloy Compd2000, 305:264–271CrossRefGoogle Scholar
  9. 9.
    Kandavel M, Ramaprabhu S. Correlation between hydrogen storage properties and amount of alloy particles in Mg-based composites. J Alloy Compd2007, 438:285–292CrossRefGoogle Scholar
  10. 10.
    Dehouche Z., Hamoudi S., Yoo Y., Belkacemi K. Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals. Proc. of 56th Canadian Chemical Engineering Conf., Sherbrooke, Quebec, Canada, October 15–18 2006, p.455Google Scholar
  11. 11.
    Flanagan TB, Park C-N, Oates WA. Hysteresis in solid state reactions. Prog Solid St Chem1995, 23:291–363CrossRefGoogle Scholar
  12. 12.
    Kennelley JA, Varwing JW, Myers HW. Magnesium-hydrogen relationships. J Phys Chem1960, 62:703–704CrossRefGoogle Scholar
  13. 13.
    Akiba E, Nomura K, Ono S, Mizuno Y. Pressure-composition isotherms of Mg-Ni-H2 alloys. J Less-Common Met1982, 83:L43–L46CrossRefGoogle Scholar
  14. 14.
    Balasubramaniam R. Hysteresis in metal-hydrogen systems. J Alloy Compd1997, 253– 254:203–206CrossRefGoogle Scholar
  15. 15.
    Karty A, Grunzweig-Genossar J, Rudman PS. Hydriding and dehydriding kinetics of Mg in a Mg/Mg2Cu eutectic alloy: pressure sweep method. J Appl Phys1979, 50:7200–7209CrossRefADSGoogle Scholar
  16. 16.
    Aguey-Zinsou K-F, Ares Fernandez JR, Klasse T, Bormann R. Using MgO to improve (de)hydriding properties of magnesium. Mater Res Bull2006, 41:1118–1126CrossRefGoogle Scholar
  17. 17.
    Stander CM. Kinetics of decomposition of magnesium hydride. J Inorg Nucl Chem, 1977, 39:221–223CrossRefGoogle Scholar
  18. 18.
    Dunning WJ. Theory of crystal nucleation from vapor, liquid and solid systems. In: Garner WE, editor. Chemistry of the Solid State. London: Butterworth, 1955. pp. 159–183Google Scholar
  19. 19.
    Nishimura C, Komaki M, Amano M. Hydrogen permeation through magnesium. J Alloy Compd, 1999, 293–295:329–333CrossRefGoogle Scholar
  20. 20.
    Humenik M, Whalen TJ. Physicochemical aspects of cermets. In: Tinklepaugh JR and Crandall WB, editors. Cermets. New York: Reinhold, 1961, pp. 6–49Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • K. B. Gerasimov
    • 1
  • I. G. Konstanchuck
    • 1
  • S. A. Chizhik
    • 1
  • J. -L. Bobet
    • 2
  1. 1.Institute of Solid State Chemistry and Mechanochemistry SB RASNovosibirskRussian Federation
  2. 2.Institut de Chimie de la Matière Condensée de Bordeaux ICMCB-CNRS,Université Bordeaux 1PessacFrance

Personalised recommendations