Effect of Mn And Zr on Hydrogen Absorption in Mg-Based Nanocomposites

  • X. Yao
  • Z. H. Zhu
  • G. Q. Lu
  • C. Z. Wu
  • P. Wang
  • H. M. Cheng
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

This paper investigates the catalytic effect of MnZr metallic coupling on hydrogenation of magnesium. It is found that MnZr coupling greatly increased the hydro-genation kinetics, especially at low temperatures. The system can absorb 5wt% hydrogen within 30 minutes at 150°C. The effect of milling time on the microstructures and hydrogenation properties has also been investigated.

Keywords

hydrogen absorption nanocomposite capacity kinetics magnesium manganese zirconium temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlapbach L. and Zuttel A. Hydrogen storage materials for mobile applications. Nature, 2001; 414: 353–358PubMedCrossRefADSGoogle Scholar
  2. 2.
    Seayad A. M. and Antonelli D. M. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv. Mater., 200; 16: 765–777Google Scholar
  3. 3.
    Hirscher M. and Becher M. J. Hydrogen storage in carbon nanotubes. J. Nanosci. Nanotechnol., 2003; 3(1–2): 3–17PubMedCrossRefGoogle Scholar
  4. 4.
    Oelerich W., Klassen T., and Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloy. Compd., 2001; 315(1–2): 237–242CrossRefGoogle Scholar
  5. 5.
    Zaluski L., Zaluska A., and Strom-Olsen J. O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloy. Compd., 1995; 217(2): 245–249CrossRefGoogle Scholar
  6. 6.
    Du A. J., Smith S. C., Yao X., and Lu G. Q. The Role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface. J. Phys. Chem. B, 2005; 109: 18037–18041PubMedCrossRefGoogle Scholar
  7. 7.
    Du A. J., Smith S. C., Yao X., and Lu G. Q. The catalytic role of sub-surface carbon in the chemisorption of hydrogen on a Mg(0001) surface: an ab-initio study. J. Phys. Chem. B, 2006; 110: 1814–1819PubMedCrossRefGoogle Scholar
  8. 8.
    Du A. J., Smith S. C., Yao X., and Lu G. Q. Hydrogen spillover mechanism on Pd-doped Mg surface revealed by ab initio density functional calculation., J. Am. Chem. Soc., 2007; 129: 10201–10204PubMedCrossRefGoogle Scholar
  9. 9.
    Yao X., Wu C. Z., Du A. J., Lu G. Q., Cheng H. M., Smith S. C., Zou J., and He Y. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. J. Phys. Chem. B, 2006; 110: 11697–11703PubMedCrossRefGoogle Scholar
  10. 10.
    Yao X., Wu C. Z., Du A. J., Zou J., Zhu Z. H., Wang P., Smith S. C., Cheng H. M., and Lu G. Q. Metallic and carbon nanotubes-catalysed coupling of hydrogenation in magnesium. J. Am. Chem. Soc., 2007; submittedGoogle Scholar
  11. 11.
    Wu C. Z., Wang P., Yao X., Liu C., Chen D. M., Lu G. Q., and Cheng H. M. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J. Alloy. Compd., 2006; 420: 278–282CrossRefGoogle Scholar
  12. 12.
    Aymard L., Dehahaye-Vidal A., Portemer F., and Disma F. J. Alloy. Compd., 1996; 238: 116–127CrossRefGoogle Scholar
  13. 13.
    Clementi E. and Raimondi D. L. Atomic screening constants from SCF functions. J. Chem. Phys., 1963; 38: 2686–2689CrossRefADSGoogle Scholar
  14. 14.
    Slater J. C. Atomic radii in crystals. J. Chem. Phys., 1964; 41: 3199–3204CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • X. Yao
    • 1
    • 2
  • Z. H. Zhu
    • 1
  • G. Q. Lu
    • 1
  • C. Z. Wu
    • 3
  • P. Wang
    • 3
  • H. M. Cheng
    • 3
  1. 1.ARC Centre for Functional NanomaterialsUniversity of QueenslandSt LuciaAustralia
  2. 2.School of EngineeringJames Cook UniversityTownsvilleAustralia
  3. 3.Shenyang National Laboratory of Materials ScienceInstitute of Metal ResearchShenyangChina

Personalised recommendations