Skip to main content

ELECTROLYTIC Ni-BASED COMPOSITE COATINGS CONTAINING MOLYBDENUM AND SILICON FOR HYDROGEN EVOLUTION REACTION

  • Conference paper
  • 1443 Accesses

Abstract

Ni + Mo + SiNi composite coatings were prepared by codeposition of Ni with powders of molybdenum and silicon (covered with the electroless plated nickel — SiNi) on a steel substrate from the nickel bath in which Mo and SiNi particles were suspended by stirring. Deposition was conducted under galvanostatic conditions. Deposits were characterized by the presence of Mo and Si phases embedded into the nickel matrix. For comparison Ni + Mo composite coatings without silicon were obtained under comparable conditions. Incorporation of Mo and SiNi powders into electrolytic nickel matrix causes an increase in the real surface area of the deposits.

The obtained composite coatings were tested as electrode materials for hydrogen evolution reaction (HER) in an alkaline environment. Electrochemical characterization of the composites was carried out by steady-state polarization method and EIS measurements. It was ascertained, that Ni + Mo + SiNi coatings are characterized by enhanced electrochemical activity for this process which was confirmed by considerable decrease in the hydrogen evolution overpotential compared to nickel electrode as well as to the Ni + Mo composite coatings. Basing on the results of EIS measurements the rate constants of the HER were determined. The calculated values of surface roughness factor allowed to study the apparent and intrinsic activity of investigated coatings for the HER. It was stated that the improvement of the electrocatalytic performance of Ni + Mo and Ni + Mo + SiNi composite coatings could be attributed both to the increase in their real surface area as well as to the synergetic effect of molybdenum with the nickel matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. R. Karimi-Shervedani, A. Lasia, J. Electrochem. Soc, 1998, 145(7): 2219–2225

    Article  Google Scholar 

  2. 2. J. M. Jaksic, M. V. Vojnovic, N. V. Krstajic, Electrochim. Acta, 2000, 45: 4151

    Article  CAS  Google Scholar 

  3. 3. J. Niedbała, A. Budniok, D. Gierlotka, J. Surówka, Thin Solid Films, 1995, 226: 113

    Article  Google Scholar 

  4. 4. B. Łosiewicz, A. St nleń, D. Gierlotka, A. Budniok, Thin Solid Films, 1999, 349: 43–50

    Article  Google Scholar 

  5. 5. M. Popczyk, A. Budmok, A. Lasia, Int. J. Hydrogen Energy, 2005, 30: 265

    Article  CAS  Google Scholar 

  6. 6. I. Paseka, J. Velicka, Electrochem. Acta, 1997, 42: 237

    Article  CAS  Google Scholar 

  7. 7. M. Popczyk, A. Serek, A. Budniok, Nanotechnology, 2003, 14: 342

    Article  ADS  Google Scholar 

  8. 8. R. Karimi-Shervedani, A. Lasia, J. Electrochem. Soc, 1997, 144: 511

    Article  Google Scholar 

  9. 9. E. Bełtowska-Lehman, E. Chassaing, J. Appl. Electrochem., 1997, 5: 568–572

    Article  Google Scholar 

  10. 10. C. Fan, D.L. Piron, A. Sleb, Surf. Coat. Technol., 1995, 73: 91

    Article  CAS  Google Scholar 

  11. 11. S. Bagdach, T. Biestek, T. Biestekowa, K. Czajka, S. Gebalski, A. Krokosz, T. Paszek, J. Rudzki, A. Samołyk, J. Socha, J. Syrek, K. Szmidt, J. Weber, T. Żak, Poradnik galwanotechnika, PWT, Warszawa, 1961

    Google Scholar 

  12. 12. J. Kubisztal, A. Budniok, A. Lasia, Appl. Surf. Sci., 2006, 252: 8605–8610

    Article  ADS  CAS  Google Scholar 

  13. 13. C. R. Hubbard, E. H. Evans, D. K. Smith, J. Appl. Cryst, 1976, 9: 169–174

    Article  Google Scholar 

  14. 14. T. Knudsen, X-Ray Spectrom., 1981, 10(2): 54–56

    Article  CAS  Google Scholar 

  15. 15. L. S. Zevin, G. Kimmel, Quantitative X-Ray Diffractometry, Springer, New York, 1995, ISBN-0-387-94541-5

    Google Scholar 

  16. J. R. Macdonald Impedance Spectroscopy, Wiley, New York, 1987

    Google Scholar 

  17. 17. J. R. Macdonald, J. Schoonman, A. P. Lehner J. Electroanal. Chem., 1982, 131: 77

    Article  CAS  Google Scholar 

  18. 18. B. A. Boukamp, Solid State Ionics, 1986, 20: 31–44

    Article  CAS  Google Scholar 

  19. 19. L. Birry, A. Lasia., J. Appl. Electrochem., 2004, 34(7): 735–749

    Article  CAS  Google Scholar 

  20. 20. J. Panek, A. Serek, A. Budniok, E. Rówiński, E. Łagiewka, Int. J. Hydrogen Energy, 2003, 28: 169–175

    Article  CAS  Google Scholar 

  21. 21. E. Navarro-Flores, Z. Chong, S. Omanovic, J. Mol. Catal. A-Chem., 2005, 226: 179

    Article  CAS  Google Scholar 

  22. 22. B. Borresen, G. Hagen, R. Tunold, Electrochim. Acta, 2002, 47: 1819

    Article  CAS  Google Scholar 

  23. 23. E. Ndzebet, O. Savadogo, Int. J. Hydrogen Energy, 1995, 20: 635

    Article  CAS  Google Scholar 

  24. 24. A. Lasia, A. Rami, J. Electroanal. Chem., 1990, 294: 123

    Article  CAS  Google Scholar 

  25. 25. F. Berthier, J. P. Diard, C. Montella, L. Pronzato, E. Walter, J. Chim. Phys., 1993, 90: 2069

    CAS  Google Scholar 

  26. 26. F. Berthier, J. P. Diard, L. Pronzato, E. Walter, Automatica, 1996, 32: 973

    Article  MATH  MathSciNet  Google Scholar 

  27. 27. L. Chen, A. Lasia, J. Electrochem. Soc, 1992, 139: 3214

    Article  CAS  Google Scholar 

  28. 28. B. Łosiewicz, A. Budniok, E. Rówiński, E. Łagiewka, A. Lasia, J. Appl. Electrochem., 2004, 34: 507–516

    Article  Google Scholar 

  29. 29. G. J. Brug, A. L. G. Van Der Eeden, M. Sluyters-Rehbach, J. H. Sluyters J. Electroanal. Chem., 1984, 176: 275

    Article  CAS  Google Scholar 

  30. 30. J. Kubisztal, A. Budniok, A. Lasia, Int. J. Hydrogen Energy, 2007, 32: 1211–1218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kubisztal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Kubisztal, J., Panek, J., Budniok, A. (2008). ELECTROLYTIC Ni-BASED COMPOSITE COATINGS CONTAINING MOLYBDENUM AND SILICON FOR HYDROGEN EVOLUTION REACTION. In: Baranowski, B., Zaginaichenko, S.Y., Schur, D.V., Skorokhod, V.V., Veziroglu, A. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8898-8_42

Download citation

Publish with us

Policies and ethics