Skip to main content

Esr Study Of Hydrogen Sorption/Desorption Kinetics In Poly(Ortho-Anisidine) And Poa/Swnts Composite Films

  • Conference paper
  • 1406 Accesses

Abstract

The cyclic hydrogen storage properties of poly(ortho-anisidine) (POA) and POA/SWNTs composite films have been investigated using the ESR spectroscopy. The ESR signals with g ͌ 2.0033 were observed in both types of the initial films for the first time. The temperature dependencies of ESR parameters suggest the polaron origin of the paramagnetic states in these films. A substantial effect due to oxygen, stored within the films, has been observed in the ESR response of composite films as well.

A strong increase of the ESR signal has been detected for composite samples kept in hydrogen atmosphere at pressure of ̃1.1 bar at room temperature. The less pronounced effect of hydrogen has been detected for the pure polymer films. The kinetics of the hydrogen adsorption — desorption processes in the samples was investigated and the results was interpreted in the frame of the hydrogen physisorption processes. The discussion of the H-induced effects in polymer and composite was carried out taking into account the morphology of the samples and the presence of paramagnetic defects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Han S.S., Kim H.S., Han K.S., Lee J.Y., Lee H.M., Kang J.K., Woo S.I., van Duin A.C.T., Goddard W.A. III, Appl. Phys. Lett., 2005, 87: 213113-1–213113-3

    ADS  Google Scholar 

  2. Jurczyka M.U., Kumara A., Srinivasanb S., Stefanakos E., Int. J. Hydrogen Energ., 2007, 32: 1010–1015

    Article  CAS  Google Scholar 

  3. Banerjee S., Murad S., Puri I.K., P. IEEE, 2006, 94 (10): 1806–1814

    Article  CAS  Google Scholar 

  4. MacDiarmid A.G., Heben M.J., Venancio E.C., Manohar S.K., Dillon A.C., Gilbert K.E.H., Conducting Polymers as Potential New Materials for Hydrogen Storage (IPHE International Hydrogen Storage Technology Conference: June 2005: Lucca, Italy)

    Google Scholar 

  5. Wang C., Guo Z.X., Fu S., Wu W., Zhu D., Prog. Polym. Sci., 2004, 29: 1079

    Article  CAS  Google Scholar 

  6. Shen K., Tierney D.L., Pietraß T., Phys. Rev., 2003, B 68: 165418

    ADS  Google Scholar 

  7. Goze-Bac C., Latil S., Lauginie P., Jourdain V., Conard J., Duclaux L., Rubio A., Bernier P., Carbon, 2002, 40: 1825

    Article  CAS  Google Scholar 

  8. Huang H., JEOL News, 2003, 38 (2): 70–72

    Google Scholar 

  9. Dag S., Gülseren O., Yildirim T., Ciraci S., Phys. Rev., 2003, B 67: 165424

    ADS  Google Scholar 

  10. Lim S.C., Jo C.S., Jeong H.J., Shin Y.M., Lee Y.H., Samayoa I.A., Choi J., J. Appl. Phys., 2002, 41 (9): 5635

    Google Scholar 

  11. Houze E., Nechtschein M., Phys. Rev., 1996, B 53 (21): 14309

    ADS  Google Scholar 

  12. Kahol P.K., Pinto N.J., Synth. Met., 2004, 140: 269–272

    Article  CAS  Google Scholar 

  13. Graeff C.F.O., Brunello C.A., Synth. Met., 2001, 119: 327–328

    Article  CAS  Google Scholar 

  14. Sitaram V., Sharma A., Bhat S.V., Mizoguchi K., Menon R., Phys. Rev., 2005, B 72 (3): 035209.1–035209.7

    ADS  Google Scholar 

  15. van Haare J.A.E., Havinga E.E., van Dongen J.L.J., Janssen R.A.J., J. Cornil, J. Bredas, Chem. Eur. J., 1998, 4 (8): 1509–1522

    Google Scholar 

  16. Paasch G., Scheinert S., Petr A., Dunsch L., Russ. J. Electrochem., 2006, 42 (11): 1161–1168

    Article  CAS  Google Scholar 

  17. Krinichnyi I., Tokarev S.V., Roth H.K., Schrodner M., Wessling B., Synth. Met., 2005, 152 (1–3): 165–168

    Article  CAS  Google Scholar 

  18. Kon'kin A.L., Shtyrlin V.G., Garipov R.R., Aganov A.V., Zakharov A.V., Krinichnyi V.I., Adams P.N., Monkman A.P., Phys. Rev., 2002, B 66: 075203–0752011

    ADS  Google Scholar 

  19. Houzé E., Nechtschein M., Pron A., Phys. Rev., 1997, B 56: 12263–12267

    ADS  Google Scholar 

  20. Han M.G., Byun S.W., Im S.S., Polym. Adv. Technol., 2002, 13: 320–328

    Article  CAS  Google Scholar 

  21. Kulikov A.V., Komissarova A.S., Ryabenko A.G., Fokeeva L.S., Shunina I.G., Belonogova O.V., Russ. Chem. B., 2005, 54 (12): 2794–2804

    Article  CAS  Google Scholar 

  22. Kanemoto K., Yamauchi J., J. Phys. Chem., 2001, B 105: 2117–2121

    Google Scholar 

  23. Chipara M., Zaleski J.M., Hui D., Du C., Pan N., J. Polym. Sci. Pol. Phys., 2005, 43: 3406–3412

    Article  CAS  Google Scholar 

  24. Druz B., Zaritskiy I., Yevtukhov Y., Konchits A., Valakh M., Shanina B., Kolesnik S., Yanchuk I., Gromovoy Yu., Diamond Relat. Mater., 2004, 13: 1592

    Article  CAS  Google Scholar 

  25. Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C., Acc. Chem. Res., 2002, 35 (12): 1105

    Article  PubMed  CAS  Google Scholar 

  26. Lueking A.D., Yang R.T., Appl. Catal. A-Gen., 2004, 265: 259–268

    Article  CAS  Google Scholar 

  27. Zacharia R., Kim K.Y., Fazle Kibria A., Nahm K.S., Chem. Phys. Lett., 2005, 412 (4–6): 369–375

    Article  ADS  CAS  Google Scholar 

  28. Li Y., Yang R.T., Am. J., Chem. Soc., 2006, 128 (3): 726–727

    Article  CAS  Google Scholar 

  29. Pekker S., Salvetat J.P., Jakab E., Bonard J.M., Forro'L., J. Phys. Chem., 2001, B 105: 7938–7943

    Google Scholar 

  30. Clewett C.F.M., Kombarakkaran J., Pietraß T., Phys. Stat. Sol., 2006 (b) 243 (13): 3242–3245

    Google Scholar 

  31. Musso S., Porro S., Rovere M., Tagliaferro A., Laurenti E., Mann M., Teo K.B.K., Milne W.I., Diamond Relat. Mater., 2006, 15: 1085–1089

    Article  CAS  Google Scholar 

  32. Han S.S., Kim H.S., Han K.S., Lee J.Y., Lee H.M., Kang J.K., Woo S.I., van Duin A.C.T., Goddard III. W.A., Appl. Phys. Lett., 2005, 87: 213113-1–213113-3

    ADS  Google Scholar 

  33. Panella B., Hirscher M., Roth S. Hydrogen adsorption in different carbon nanostructures, Carbon, 2005, 43 (10): 2209–2214

    Article  CAS  Google Scholar 

  34. Terrés E., Panella B., Hayashi T., Kim Y.A., Endo M., Dominguez J.M., Hirscher M., Terrones H., Terrones M. Hydrogen storage in spherical nanoporous carbons, Chem. Phys. Lett., 2005, 403: 363–366

    Article  ADS  CAS  Google Scholar 

  35. Yoo E., Habe T., Nakamura J. Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials, Science & Technol. Adv. Materials, 2005, 6 (6): 615–619

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Konchits, A.A., Kolesnik, S.P., Yefanov, V.S., Motsnyi, F.V., Tamburri, E., Terranova, M.L. (2008). Esr Study Of Hydrogen Sorption/Desorption Kinetics In Poly(Ortho-Anisidine) And Poa/Swnts Composite Films. In: Baranowski, B., Zaginaichenko, S.Y., Schur, D.V., Skorokhod, V.V., Veziroglu, A. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8898-8_24

Download citation

Publish with us

Policies and ethics