CARBON-CARBON COMPOSITES — CARRIERS FOR HETEROGENEOUS CATALYSTS FOR DEHYDROGENATION OF HYDROCARBONS

  • M. N. Efimov
  • L. M. Zemtsov
  • G. P. Karpacheva
  • M. M. Ermilova
  • N. V. Orekhova
  • E. L. Dzidziguri
  • E. N. Sidorova
  • O. N. Efimov
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Highly-dispersed metals supported on oxide carriers are active in the most of catalytic reactions of hydrocarbons dehydrogenation. Coking is the serious problem of such catalysts. It occurs due to undesirable further dehydrogenation of transition surface forms of hydrocarbons. To solve this problem, additives (Pb, Sn, Re, etc.) are introduced into the catalyst. They reduce the ability of a metal to form multiple bonds of adsorbed forms with the active phase of the catalyst. Recently, carbon materials were proposed as carriers for the task in question [1].

Among new forms of carbon carriers allowing high specific surface of metal and stable dispersion of its particles, materials obtained by carbonization of polymers hold high interest. Introduction of catalytically active metals into the carbon matrix can be performed as early as in the stage of carbonization, simultaneously increasing their activity and stability.

Keywords

hydrocarbon composite carbonization dehydrogenation stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radovic L.R., Rodriguez-Reinoso F. Carbon materials in catalysis. In: Thrower PA, editor. Chemistry and Physics of Carbon. 25. New York: Marcel Dekker. 1997. 243–358Google Scholar
  2. 2.
    Zemtsov L.M., Karpacheva G.P., Efimov M.N., Muratov D.G., Bagdasarova K.A. Carbon nanostructures based on IR-pyrolyzed polyacrylonitrile. Polymer Science A 2006, 48(6): 633–637CrossRefGoogle Scholar
  3. 3.
    Gorelik S.S., Rastorguev L.N., Skakov U.A. Radiographic and Electro-optical Analysis. The Practical book. Moscow: Metallurgy. 1970: 366 pGoogle Scholar
  4. 4.
    Selivanov V.N., Smyslov V.F. Shortcut methods of x-ray analysis of crystallites distribution of deformated polycrystallites dislocation structure. Materialovedenie. 1998, 4–5: 10–14. (in Russian)Google Scholar
  5. 5.
    Kozlov V.V., Korolyov Y.M., Karpacheva G.P. Structural changes of composite based on polyacrylonitrile and fullerene C60 after IR-radiation. Vysokomolekulyarnye Soedineniya ? 1999, 41(5): 836 (in Russian)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • M. N. Efimov
    • 1
  • L. M. Zemtsov
    • 1
  • G. P. Karpacheva
    • 1
  • M. M. Ermilova
    • 1
  • N. V. Orekhova
    • 1
  • E. L. Dzidziguri
    • 2
  • E. N. Sidorova
    • 2
  • O. N. Efimov
    • 3
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State Institute of Steel and AlloysMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations