Skip to main content

VERY LARGE Cn — EXPECTATIONS AND REALITY

  • Conference paper
Carbon Nanomaterials in Clean Energy Hydrogen Systems

Abstract

All known methods for fullerene synthesis produce a variety of Cn molecules, indicating that fullerene with other sizes than C60 exist and can be stable. However, the range and variety of those molecules is largely unexplored. It is also unknown if there is an upper limit for n. The size and the shape of those molecules become crucial when they are surrounded by a gas or a liquid since the molecules are exposed to elevation force and pressure. The resistance to pressure and the elevation force are the highest if the shape is spherical. Spherical or almost spherical shape can be achieved if the carbon network includes a certain amount of defects (pentagon-heptagon rings). Those spherical structures can be expected since computer simulation of the Cn growth predicts that the number of the defects is significant during the synthesis. In this paper we show that spherical Cn structures, which are large enough to be lighter than air, can potentially withstand atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E. C60: Buckminsterfullerene.Nature 1985,318: 162–163

    Article  ADS  CAS  Google Scholar 

  2. Curl R.F., Smalley R.E., Probing C60.Science 1988,242: 1017–1021

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Parker D.H., Wurz P., Chatterjee K., Lykke K.R., Hunt J.E., Pellin M.J., et al. High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 and C266.J. Am. Chem. Soc. 1991,113: 7499–7503

    Article  CAS  Google Scholar 

  4. Siber A., Energies of sp2 carbon shapes with pentagonal disclination and elasticity theory.Nanotechnology. 2006,17: 3598–3606

    Article  ADS  CAS  Google Scholar 

  5. Hertel T., Walkup R.E., Avouris P. Deformation of carbon nanotubes by surface van der Waals forces.Phys. Rev. B 1998,58: 13870–13873

    Article  ADS  CAS  Google Scholar 

  6. Koprinarov N., Konstantinova M. Can solid carbon materials be lighter than water and air?J. Nanopart. Res. 2007 (DOI 10.1007/s11051-007-9229-3)

    Google Scholar 

  7. Siber A. Shapes and energies of giant icosahedral fullerenes. Onest of ridge sharpening transition.Eur. Phys. J. B 2006,53: 395–400

    Article  ADS  CAS  Google Scholar 

  8. Lidmar J., Miny L., Nelson D.R. Virus shapes and buckling transitions in spherical shells.Phys. Rev. E 2003,68(051910): 1–10

    Google Scholar 

  9. Nguyen T.T., Bruinsma R.F., Gelbart W.M. Elasticity theory and shape transitions of viral shells.Phys. Rev. E 2005,72(051923): 1–19

    MathSciNet  Google Scholar 

  10. Siber A. Bucking transition in icosahedral shells subjected to volume conservation constraint and pressure: relations to virus naturation.Phys. Rev. E 2006,73(061915): 1–10

    Google Scholar 

  11. Perez-Carido A., Dodgson M.J.W., Moore M.A. Influence of discussions in Tomson's problem.Phys. Rev. B 199756(7): 3640–3643

    Article  ADS  Google Scholar 

  12. Perez-Carrido A., Moore M.A. Symmetric patterns of dislocations in Tomson's problem.Phys. Rev. B 1999,60(23): 15628–15631

    Article  ADS  Google Scholar 

  13. Perez-Carrido A. Giant multilayer fullerene structures with symmetrically arranged defects.Phys. Rev. B 2000,62(11): 6979–6981

    Article  ADS  Google Scholar 

  14. Terrones H., Terrones M., Moran-Lopes J.L. Curved nanomaterials.Curr. Sci. 2001,81(8): 1011–1020

    CAS  Google Scholar 

  15. Terrones M., Terrones H. The Role of Defects in Graphitic Structures http://www.informa world.com/smpp/title(content=t713597253)

    Google Scholar 

  16. Heggie M.I., Terrones M., Eggen B.R., Jungnikel G., Jones R., Lathan C.D., et. al., Quantitative density-functional study of nested fullerenes.Phys. Rev. B Third Series 1998,57(21): 13339–133342

    Article  ADS  CAS  Google Scholar 

  17. Terrones H., Terrones M. The transformation of polyhedral particles into graphitic onions.J. Chem. Solids 1997,58(11): 1784–1796

    Article  ADS  Google Scholar 

  18. Irle S., Zheng G., Wang Z., Mokoruma K. The C60 formation puzzle “solved”: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism.J. Phys. Chem. B 2006,110: 14531–14545

    Article  PubMed  CAS  Google Scholar 

  19. Zheng G., Irle S., Mokoruma K. Towards formation of buckminsterfullerene C60 in quantum chemical molecular dynamics.J. Chem. Phys. 2005,122(014708): 1–7

    Google Scholar 

  20. Li C., Chou T.-W. Elastic properties of single-walled carbon nanotubes in transverse directions.Phys. Rev. B 2004,69(073401): 1–3

    Google Scholar 

  21. Qi H.J., Teo K.B.K., Lau K.K.S., Boyce M.C., Milne W.I., Robertson J., et. al. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation.J. Mech. Phys. Sol. 2003,51: 2213–2237

    Article  ADS  CAS  Google Scholar 

  22. Xin Z., Jianjun Z., Ou.-Yang Zhong-Can. Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory.Phys. Rev. B 2000,62: 13692–13696

    Article  ADS  CAS  Google Scholar 

  23. Salvetat J.-P., Bonard J.-M., Thomson N.H., Kulik A.J., Forró L., Benoit W., Zuppiroli L. Mechanical properties of carbon nanotubes l,Appl. Phys. A 1999,69(3): 255–260

    Article  ADS  CAS  Google Scholar 

  24. Lourie O., Cox D.M., Wagner H.D. Buckling and collapse of embedded carbon nanotubes.Phys. Rev. Lett. 1998,81(8): 1638–1641

    Article  ADS  CAS  Google Scholar 

  25. Zhang P., Lammert P.E., Crespi V.H.Phys. Rev. Lett. 1998,81(24): 5346–5349

    Article  ADS  CAS  Google Scholar 

  26. Srivastava D., Menon M., Cho K. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression.Phys. Rev. Lett. 1999,83(15): 2973–2976

    Article  ADS  CAS  Google Scholar 

  27. Patterson J.R., Catledge Sh.A., Vohra Y.K. Nanodentation and x-ray diffraction studies of pressure-induced amorphization in C-70 fullerene.Appl. Phys. Lett. 2000,77(6): 851–853

    Article  ADS  CAS  Google Scholar 

  28. Tang J., Qin Lu.-Ch., Sasaki T., Yudasaka M., Matsushita A., Iijima S. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure.Phys. Rev. Lett. 2000,85(9): 1887–1889

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Yacobson B.I., Smalley R.E. Fullerene Nanotubes: C1,000,000. American Scientist Online— The Magazine of Sigma XI, The Scientific Research Society, 1997

    Google Scholar 

  30. Harris P.J.F. Fullerene-related structure of commercial glassy carbons.Philos. Mag. 2004,84(29): 3159–3167

    Article  ADS  CAS  Google Scholar 

  31. Lou Z., Chen Q., Gao J., Zhang Y. Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells.Carbon 2004,42: 219–238

    Article  CAS  Google Scholar 

  32. Niwase K., Homae T., Nakamura K.G., Kondo K. Generation of giant carbon hollow spheres from C60 fullerene by shock-compression.Chem. Phys. Lett. 2002,362: 47–50

    Article  ADS  CAS  Google Scholar 

  33. Blank V.D., Gorlova I.G., Hutchison J.L., Kiselev N., Ormont A.B., Polyakov E.V., Sloan J., Zakharov D.N., Zybtsev S.G. The structure of nanotubes fabricated by carbon evaporation at high gas pressure.Carbon 2000,38: 217–1239

    Google Scholar 

  34. Collins P.G., Arnold M.S., Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.Science 2001,292: 706–709

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koprinarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Koprinarov, N., Konstantinova, M. (2008). VERY LARGE Cn — EXPECTATIONS AND REALITY. In: Baranowski, B., Zaginaichenko, S.Y., Schur, D.V., Skorokhod, V.V., Veziroglu, A. (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8898-8_15

Download citation

Publish with us

Policies and ethics