Skip to main content

Thermodynamics, Irreversibility, and Optimality in Land Surface Hydrology

  • Chapter
Bioclimatology and Natural Hazards

Abstract

The water exchange at the land surface is driven by the input of water by precipitation and the loss by runoff generation and evapotranspiration into the atmosphere. It is strongly linked to the surface energy balance by the flux of latent heat associated with evapotranspiration, but also to the dynamics of the atmosphere and the terrestrial biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113: 151–161

    Article  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer Publishers, New York, NY, 2nd edition

    Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, San Diego, 771pp

    Google Scholar 

  • Kleidon A, Fraedrich K, Kunz T, Lunkeit F (2003) The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30: 2223

    Article  Google Scholar 

  • Kleidon A (2004) Beyond Gaia: Thermodynamics of life and Earth system functioning. Clim. Ch. 66: 271–319

    Article  Google Scholar 

  • Kleidon A, Lorenz RD (2005) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer Publishers, Heidelberg

    Book  Google Scholar 

  • Kleidon A, Fraedrich K, Kirk E, Lunkeit F (2006) Maximum Entropy Production and the Strength of Boundary Layer Exchange in an Atmospheric General Circulation Model. Geophys. Res. Lett. 33: L06706

    Article  Google Scholar 

  • Kleidon A (2006) The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Glob. Planet. Ch. 54: 109–127

    Article  Google Scholar 

  • Kleidon A (2008) Energy balance. In: Jœrgensen SE, Fath BD (eds.) Global Ecology. Vol. 2 of Encyclopedia of Ecology, 5: 1276–1289, Elsevier, Oxford.

    Google Scholar 

  • Kondepudi D, Prigogine I (1998) Modern thermodynamics, From heat engines to dissipative structures. Wiley, Chichester, 486pp

    Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7: 157–167

    Article  Google Scholar 

  • Lorenz RD, Lunine JI, Withers PG, McKay CP (2001) Titan, Mars and Earth: Entropy production by latitudinal heat transport. Geophys. Res. Lett. 28: 415–418

    Article  Google Scholar 

  • Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426: 1–45

    Article  Google Scholar 

  • Ozawa H, Ohmura A, Lorenz RD, Pujol T (2003) The second law of thermodynamics and the global climate system – A review of the Maximum Entropy Production principle. Rev. Geophys. 41: 1018

    Article  Google Scholar 

  • Paltridge GW (1975) Global dynamics and climate – a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101: 475–484

    Article  Google Scholar 

  • Pauluis OM (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer Verlag, Heidelberg, 107–120

    Chapter  Google Scholar 

  • Pauluis OM, Balaji V, Held IM (2000) Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci. 57: 987–994

    Article  Google Scholar 

  • Pauluis OM, Held IM (2002) Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J. Atmos. Sci. 59: 125–139.

    Article  Google Scholar 

  • Peixoto O (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Roderick ML (2001) On the use of thermodynamic methods to describe water relations in plants and soil. Aust. J. Plant Physiol. 28: 729–742

    Google Scholar 

  • Schneider ED, Kay JJ (1994) Life as a manifestation of the second law of thermodynamics. Math. Comput. Modeling 19: 25–48

    Article  Google Scholar 

  • Tesař M, Šír M, Lichner Ľ, Čermák J (2007) Plant transpiration and net entropy exchange on the Earth’s surface. Biologia, Bratislava, 62/5:547–551

    Google Scholar 

  • Tributsch H, Čermák J, Nadezhdina N (2005) Kinetic studies on tensile state of water in trees. J. Phys. Chem. B 109: 17693–1707

    Article  Google Scholar 

  • Ulanowicz RE, Hannon BM (1987) Life and the production of entropy. Proc. R. Soc. Lond. B 232: 181–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kleidon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kleidon, A., Schymanski, S., Stieglitz, M. (2009). Thermodynamics, Irreversibility, and Optimality in Land Surface Hydrology. In: Střelcová, K., et al. Bioclimatology and Natural Hazards. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8876-6_9

Download citation

Publish with us

Policies and ethics