Advertisement

Seasonal Changes in Transpiration and Soil Water Content in a Spruce Primeval Forest During a Dry Period

  • F. Matejka
  • K. Střelcová
  • T. Hurtalová
  • E. Gömöryová
  • L’. Ditmarová

Abstract

Transpiration covers approximately half of the annual precipitation total under humid temperate conditions in Europe (Denmead and Shaw 1962). The energetic equivalent of this amount of transpired water represents an important contribution to the energy balance of the Earth’s surface. In response to water stress, plants regulate their transpiration by decreasing their stomatal conductance (Sperry 2000).

Keywords

Transpiration Soil water content Spruce primeval forest Mathematical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Kaisi M, Brun LJ, Enz JW (1989) Transpiration and evaporation from maize as related to leaf area index. Agric. For. Meteorol., 48, 111–116CrossRefGoogle Scholar
  2. Bichele Z, Moldau H, Ross J (1980) Mathematical Modelling of Plant Transpiration and Photosynthesis under Soil Moisture Stress [in Russian]. Gidrometeoizdat, Leningrad, 222pGoogle Scholar
  3. Bunce JA (1996) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ., 19, 131–135Google Scholar
  4. Calvet JC (2000) Investigating soil and atmospheric plant water stress using physiological and micrometeorological data. Agric. For. Meteorol., 103, 229–247CrossRefGoogle Scholar
  5. Choudhury BJ, Idso SB (1985) Evaluating plant and canopy resistances of field grown wheat from concurrent diurnal observations of leaf water potential, stomatal resistance, canopy temperature and evapotranspiration flux. Agric. For. Meteorol., 34, 67–76CrossRefGoogle Scholar
  6. Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc., 114, 373–398CrossRefGoogle Scholar
  7. Cienciala E (1992) Assessment of transpiration estimates for Picea abies trees during a growing season. Trees, 6, 121–127CrossRefGoogle Scholar
  8. Cienciala E, Eckersten H, Lindroth A, Hällgren JE (1994) Simulated and measured water uptake by Picea abies under non limiting soil water conditions. Agric. For. Meterorol., 71, 147–164CrossRefGoogle Scholar
  9. Cienciala E, Kučera J, Lindroth A, Čermák J, Grelle A, Halldin S (1997) Canopy transpiration from a boreal forest in Sweden during a dry year. Agric. For. Meteorol., 86, 157–167CrossRefGoogle Scholar
  10. Čermák J, Kučera J (1981) The compensation of natural temperature gradient in the measuring point during the sap flow rate determination in trees. Biol. Plant., 23, 469–471CrossRefGoogle Scholar
  11. Čermák J, Palát M, Penka M (1976) Transpiration flow rate in a full grown tree of Prunus avium L. estimated by the method of heat balance in connection with some meteorological factors. Biol. Plant., 18, 111–118CrossRefGoogle Scholar
  12. Čermák J, Ulehla J, Kučera J, Penka M (1982) Sap flow rate and transpiration determination in full grown oak (Quercus robur L.) in floodplain forest exposed to seasonal floods, as related to potential evapotranspiration and tree dimensions. Biol. Plant., 24, 446–460CrossRefGoogle Scholar
  13. Denmead OT, Shaw RT (1962) Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agron. J., 54, 358–390Google Scholar
  14. Granier A, Biron P, Lemoin D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol., 100, 291–308CrossRefGoogle Scholar
  15. Granier A, Loustau D (1994) Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric. For. Meteorol., 71, 61–81CrossRefGoogle Scholar
  16. Gucci R, Massai R, Xiloyanis C, Flore JA (1996) The effect of drought and vapour pressure deficit on gas exchange of young kiwifruit (Actinidia deliciosa var. deliciosa) vines. Ann. Botany, 77, 605–613CrossRefGoogle Scholar
  17. Habermann G, Machado EC, Rodrigues JD, Medina CL (2003) Gas exchange rates at different vapor pressure deficits and water relations of ‘Pera’ sweet orange plants with citrus variegated chlorosis (CVC). Scientia Horticulturae, 98, 233–245CrossRefGoogle Scholar
  18. Honert TH (1948) Water transport in plants as a catenary process. Discuss Faraday Soc., 3, 146–153CrossRefGoogle Scholar
  19. Iritz Z, Lindroth A, Heikinheimo M, Grelle A, Kellner E (1999) Test of a modified Shuttlerworth – Wallace estimate of boreal forest evaporation. Agric. For. Meteorol., 98–99, 605–619CrossRefGoogle Scholar
  20. Jara J, Stockles JO, Kjelgaard JK (1998) Measurement of evapotranspiration and its components in a corn (Zea Mays L.) field. Agric. For. Meteorol., 92, 131–145CrossRefGoogle Scholar
  21. Karl TR, Knight RW, Plummer N (1995) Trends in high frequency climate variability in the twentieth century. Nature, 377, 211–227CrossRefGoogle Scholar
  22. Katerji N, Perrier A (1985) Determination of canopy resistance to water vapour and its various components: theoretical approaches and experimental verification.Agric. For. Meteorol., 34, 105–120Google Scholar
  23. Kučera J, Čermák J, Penka M (1977) Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum 19, 413–420CrossRefGoogle Scholar
  24. Leonardi Ch, Guichard S, Bertin N (2000) High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Scientia Horticulturae 84, 285–296CrossRefGoogle Scholar
  25. Monteith JL (1965) Evaporation and environment. In: G.E. Fogg (ed.), The State and Movement of Water in Living Organisms. Academic Press, New York, 205–234Google Scholar
  26. Morikawa Y, Hatori S, Kyiono Y (1986) Transpiration of a 31-year-old Chamaecyparis odtusa Endl. stand before and after thinning. Tree Physiol., 2, 105–114Google Scholar
  27. Shukla J, Mintz Y (1982) The influence of land surface evapotranspiration on Earth’s climate. Science, 215, 1498–1501CrossRefGoogle Scholar
  28. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops – an energy combination theory. Q. J. R. Meteorol. Soc., 111, 839–855CrossRefGoogle Scholar
  29. Škvarenina J, Střelcová K, Mind’áš J (2002) Bioclimatological and ecophysiological research in Biosphere Reserve Poľana. (In Slovak). In: Rožnovský, J., Litschmann, T. (ed.): XIV. Czech-Slovak Bioclimatological Conference, CD-ROM, ISBN 80-85813-99-8, 429–441Google Scholar
  30. Sperry S (2000) Hydraulic constraints on plant gas exchange. Agric. For. Meteorol., 104, 13–23.CrossRefGoogle Scholar
  31. Torula T, Heikinheimo M (1999) Modelling evapotranspiration from a barley field in the growing season. Agric. For. Meteorol., 91, 237–250CrossRefGoogle Scholar
  32. Turner NC, Schulz ED, Gollan T (1984) The response of stomata and leaf gas exchange to vapour pressure deficits and soil water contents. Oecologia, 63, 338–342CrossRefGoogle Scholar
  33. Wallace JS (1995) Calculating evaporation: resistance to factors. Agric. For. Meteorol., 73, 353–366CrossRefGoogle Scholar
  34. Wallace JS, Roberts JM, Sivakumar SVK (1990) The estimation of transpiration from sparse dryland millet using conductance and vegetation area indices. Agric. For. Meteorol., 51, 35–49CrossRefGoogle Scholar
  35. Wang YP (2000) An improvement to the two-big-leaf model for calculating canopy photosynthesis. Agric. For. Meteorol., 10, 143–150CrossRefGoogle Scholar
  36. Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over broadleaved temporate deciduous forest in North America. Agric. For. Meteorol., 100, 1–18CrossRefGoogle Scholar
  37. Wind PG (1972) A hydraulic model for simulation of non/hysteric vertical unsaturated flow of moisture in soils. J. Hydrol., 15, 227–246CrossRefGoogle Scholar
  38. Xue Q, Weiss A, Arkebauer TJ, Baenziger PS (2004) Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environ.Exp. Botany, 51, 167–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. Matejka
    • 1
  • K. Střelcová
    • 2
  • T. Hurtalová
    • 1
  • E. Gömöryová
    • 3
  • L’. Ditmarová
    • 4
  1. 1.Geophysical Institute Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Technical University in ZvolenSlovakia
  3. 3.Technical University in ZvolenSlovakia
  4. 4.Institute of Forest EcologySlovak Academy of SciencesSlovakia

Personalised recommendations