Advertisement

Quantum waveguides

Part of the Theoretical and Mathematical Physics book series (TMP)

Let us return now to the subject we discussed in Section 14.5 and analyze in more detail the situation when a particle is confined to an unbounded region Ω of the particular shape of a tube or layer; in view of the natural analogy we will speak about such systems as quantum waveguides. There are two reasons why this topic deserves a separate chapter. First of all, such systems can be useful as models of various systems studied by the experimentalists, such as semiconductor “quantum wires“, carbon nanotubes, hollow-fibre atomic waveguides, etc. The second, and no less important, reason is that one encounters here effects which show again that an intuition based on our everyday “macroscopic“ experience can be a false guide when dealing with objects governed by the laws of quantum theory.

Keywords

Discrete Spectrum Trial Function Essential Spectrum Transverse Mode Quantum Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

a) Monographs, textbooks, proceedings:

  1. [[ Ad ]]
    R.A. Adams:Sobolev Spaces, Academic, New York 1975.MATHGoogle Scholar
  2. [[ AG ]]
    N.I. Akhiezer, I.M. Glazman:Theory of Linear Operators in Hilbert space, 3r dedition, Viša Škola, Kharkov 1978 (in Russian; English translation of the 1st edition: F. Ungar Co., New York 1961, 1963).Google Scholar
  3. [[ ACH ]]
    S. Albeverioet al., eds.:Feynman Path Integrals, Lecture Notes in Physics, vol. 106, Springer, Berlin 1979.Google Scholar
  4. [ AFHL ]
    S. Albeverioet al., eds.:Ideas and Methods in Quantum and Statistical Physics. R. Høegh—Krohn Memorial Volume, Cambridge University Press, Cambridge 1992.Google Scholar
  5. [[ AGHH ]]
    S. Albeverio, F. Gesztesy, R. Høegh—Krohn, H. Holden:Solvable Models in Quantum Mechanics, 2nd edition, with an appendix by P. Exner, AMS Chelsea Publishing, Providence, RI, 2005MATHGoogle Scholar
  6. [[AH]]
    S. Albeverio, R. Høegh—Krohn:Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, vol. 523, Springer, Berlin 1976.Google Scholar
  7. [[ Al ]]
    P.S. Alexandrov:Introduction to Set Theory and General Topology, Nauka, Moscow 1977 (in Russian).Google Scholar
  8. [[ Am ]]
    W.O. Amrein:Non—Relativistic Quantum Dynamics, Reidel, Dordrecht 1981.MATHGoogle Scholar
  9. [ AJS ]
    W.O. Amrein, J.M. Jauch, K.B. Sinha:Scattering Theory in Quantum Mechanics. Physical Principles and Mathematical Methods, Benjamin, Reading, MA 1977.MATHGoogle Scholar
  10. [[ A ŽŠ ]
    M.A. Antonec, G.M. Žislin, I.A. Šereševskii:On the discrete spectrum of N—body Hamiltonians, an appendix to the Russian translation of the monograph[[JW]], Mir, Moscow 1976 (in Russian).Google Scholar
  11. [ BaR ]
    A.O. Barut, R. Raczka:Theory of Group Representations and Applications,2nd edition, World Scientific, Singapore 1986.MATHGoogle Scholar
  12. [ BW ]
    H. Baumgärtel, M. Wollenberg:Mathematical Scattering Theory, Akademie Verlag, Berlin 1983.Google Scholar
  13. [[ Ber ]]
    F.A. Berezin:The Second Quantization Method, 2nd edition, Nauka, Moscow 1986 (in Russian; English transl. of the 1st edition: Academic, New York1966).MATHGoogle Scholar
  14. [[ BeŜ ]]
    F.A. Berezin, M.A. Ŝubin:Schrödinger Equation, Moscow State University Publ., Moscow 1983 (in Russian; English translation: Kluwer, Dordrecht 1996).MATHGoogle Scholar
  15. [ BL ]
    L.C. Biedenharn, J.D. Louck:Angular Momentum in Quantum Theory. Theory and Applications, Addison—Wesley, Reading, MA 1981.Google Scholar
  16. [[ B S ]]
    M. Š. Birman, M.Z. Solomyak:Spectral Theory of Self-Adjoint Operators in Hilbert Space, Leningrad State University Lenninguad. 1980 (in Russian; English translation: Kluwer, Dordrecht 1987).Google Scholar
  17. [[BD 1,2]]
    J.D. Bjorken, S.D. Drell:Relativistic Quantum Theory, I. Relativistic Quantum Mechanics, II. Relativistic Quantum Fields, McGraw—Hill, New York 1965.Google Scholar
  18. [[Boe]]
    H. Boerner:Darstellungen von Gruppen, 2.Ausgabe, Springer, Berlin 1967 (English translation: North-Holland, Amsterdam 1970).MATHGoogle Scholar
  19. [ BLOT ]
    N.N. Bogolyubov, A.A. Logunov, A.I. Oksak, I.T. Todorov:General Principles of Quantum Field Theory, Nauka, Moscow 1987 (in Russian; a revised edition ofFoundations of the Axiomatic Approach to Quantum Field Theoryby the first two and the last author, Nauka, Moscow 1969;English translation: W.A. Benjamin, Reading, MA1975, referred to as [[ BLT ]]).Google Scholar
  20. [[ B Š ]
    N.N. Bogolyubov, D.V. Širkov:An Introduction to the Theory of Quantized Fields, 4th edition, Nauka, Moscow 1984 (in Russian; English translation of the 3rd edition: Wiley—Interscience, New York1980).Google Scholar
  21. [[ Bo ]]
    D. Bohm :Quantum Theory, Prentice-Hall, New York 1952.MATHGoogle Scholar
  22. [ BR 1,2 ]
    O. Bratelli, D.W. Robinson:Operator Algebras and Quantum Statistical Mechanics I, II, Springer, New York 1979, 1981.Google Scholar
  23. [ BLM ]
    P. Busch, P.J. Lahti, P. Mittelstaedt:The Quantum Theory of Measurement, 2nd revised edition, Springer LNP m2, Berlin 1996.MATHGoogle Scholar
  24. [[ ChS ]]
    K. Chadan, P. Sabatier:Inverse Problems in Quantum Scattering Theory, 2nd edition, Springer, New York 1989.MATHGoogle Scholar
  25. [[ CL ]]
    Tai—Pei Cheng, Ling—Fong Li:Gauge Theory of Elementary Particle Physics,Clarendon Press, Oxford 1984.Google Scholar
  26. [[ Cher ]]
    P.R. Chernoff:Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators, Mem. Amer. Math. Soc., Providence, RI 1974.Google Scholar
  27. [ CFKS ]
    H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon:Schrödinger operators, with Application to Quantum Mechanics and Global Geometry, Springer, Berlin 1987; corrected and extended 2nd printing, Springer, Berlin 2007.MATHGoogle Scholar
  28. [[ Da 1 ]]
    E.B. Davies:Quantum Theory of Open Systems, Academic, London 1976.MATHGoogle Scholar
  29. [[ Da 2 ]]
    E.B. Davies:One—Parameter Semigroups, Academic, London 1980.MATHGoogle Scholar
  30. [ Dav ]
    A.S. Davydov:Quantum Mechanics, 2nd edition, Nauka, Moscow 1973 (in Russian; English translation of the 1st edition: Pergamon Press, Oxford 1965).Google Scholar
  31. [[ DO ]]
    Yu.N. Demkov, V.N. Ostrovskii:The Zero—Range Potential Method in Atomic Physics, Leningrad University Press, Leningrad 1975 (in Russian).Google Scholar
  32. [ DENZ ]
    M. Demuth, P. Exner, H. Neidhardt, V.A. Zagrebnov, eds.:Mathematical Results in Quantum Mechanics, Operator Theory: Advances and Applications, vol. 70; Birkhäuser, Basel 1994.Google Scholar
  33. [[DG]]
    J. Derezinski, Ch. Gerard:Scattering theory of classical and quantum N—particle systems, Texts and Monographs in Physics, Springer, Berlin 1997.Google Scholar
  34. [[ Dir ]]
    P.A.M. Dirac:The Principles of Quantum Mechanics, 4th edition, Clarendon Press, Oxford 1969.Google Scholar
  35. [ DE ]
    J. Dittrich, P. Exner, eds.:Rigorous Results in Quantum Dynamics, World Scientific, Singapore 1991.MATHGoogle Scholar
  36. [DET ]
    J. Dittrich, P. Exner, M. Tater, eds.:Mathematical Results in Quantum Mechanics, Operator Theory: Advances and Appl., vol. 108; Birkhäuser, Basel 1999.Google Scholar
  37. [[ Di 1 ]]
    J. Dixmier:Les algèbres des opérateurs dans l'espace hilbertien (algèbres de von Neumann), 2me edition, Gauthier—Villars, Paris 1969.Google Scholar
  38. [[ Di 2 ]]
    J. Dixmier:Les C*—algèbras and leur représentations, 2me edition, Gauthier-Vilars, Paris 1969.Google Scholar
  39. [[DS 1—3]]
    N. Dunford, J.T. Schwartz:Linear Operators, I. General Theory, II. Spectral Theory, III. Spectral Operators, Interscience Publications, New York 1958, 1962, 1971.Google Scholar
  40. [[ Edm ]]
    A.R. Edmonds:Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, NJ 1957; a revised reprint Princeton 1996.MATHGoogle Scholar
  41. [[ EG ]]
    S.J.L. van Eijndhoven, J. de Graaf:A Mathematical Introduction to Dirac Formalism, North—Holland, Amsterdam 1986.MATHGoogle Scholar
  42. [[ Em ]]
    G.G. Emch :Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley—Interscience, New York 1972.MATHGoogle Scholar
  43. [[ Ex ]]
    P. Exner:Open Quantum Systems and Feynman Integrals, D. Reidel, Dordrecht 1985.MATHGoogle Scholar
  44. [ EKKST ]
    P. Exner, J. Keating, P. Kuchment, T. Sunada, A. Teplyaev, eds.:Analysison Graphs and Applications, Proceedings of the Isaac Newton Institute programme“Analysis on Graphs and Applications”, AMS “Contemporary Mathematics” Series, 2008Google Scholar
  45. [ EN ]
    P. Exner, J. Neidhardt, eds.:Order, Disorder and Chaos in Quantum Systems,Operator Theory: Advances and Applications, vol. 46; Birkhäuser, Basel 1990.Google Scholar
  46. [[ EŠ 1 ]]
    P. Exner, P. Seba, eds.:Applications of Self—Adjoint Extensions in Quantum Physics, Lecture Notes in Physics, vol. 324; Springer, Berlin 1989.Google Scholar
  47. [[ E Š 2 ]]
    P. Exner, P. Seba, eds.:Schrödinger Operators, Standard and Non—standard, World Scientific, Singapore 1989.Google Scholar
  48. [[ Fel 1,2 ]]
    W. Feller:An Introduction to Probability Theory and Its Applications I, II, 3rd and 2nd edition, resp., Wiley, New York 1968, 1971.Google Scholar
  49. [ Fey ]]
    R.P. Feynman:Statistical Mechanics. A Set of Lectures, W.A. Benjamin, Reading, MA. 1972.Google Scholar
  50. [[ FH ]]
    R.P. Feynman, A.R. Hibbs:Quantum Mechanics and Path Integrals, McGraw— Hill, New York 1965.MATHGoogle Scholar
  51. [ FG ]]
    L. Fonda, G.C. Ghirardi:Symmetry Principles in Quantum Physics, Marcel Dekker, New York 1970.Google Scholar
  52. [[ G Š ]
    I.M. Gel'fand, G.M. Silov:Generalized Functions and Operations upon Them, vol.I, 2nd edition, Fizmatgiz, Moscow 1959(in Russian; English translation: Academic, New York 1969).Google Scholar
  53. [ Gl ]
    I.M. Glazman:Direct Methods of Qualitative Analysis of Singular Differential Operators, Fizmatgiz, Moscow 1963(in Russian).Google Scholar
  54. [ GJ ]
    J. Glimm, A. Jaffe:Quantum Physics: A Functional Integral Point of View, 2nd edition, Springer, New York 1987.Google Scholar
  55. [ Gr ]
    A. Grothendieck:Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc., vol. 16, Providence, RI 1955.Google Scholar
  56. [[ Haa ]]
    R. Haag:Local Quantum Physics. Fields, Particles, Algebras, 2nd revised and enlarged edition Springer, Berlin 1996.MATHGoogle Scholar
  57. [[ Hal 1 ]]
    P. Halmos:Measure Theory, 2nd edition, Van Nostrand, New York 1973.Google Scholar
  58. [[Hal 2]]
    P. Halmos:A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ 1967.MATHGoogle Scholar
  59. [[ Ham ]]
    M. Hamermesh:Group Theory and Its Applications to Physical Problems, Addison-Wesley, Reading, MA. 1964.Google Scholar
  60. [ HW ]
    G.H. Hardy, E.M. Wright:An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, oxford 1979.MATHGoogle Scholar
  61. [[ Hel ]]
    B. Helffer: Semi—Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, vol. 1366, Springer, Berlin 1988.Google Scholar
  62. [ HP ]
    E. Hille, R.S. Phillips: Functional Analysis and Semigroups, Am. Math. Soc. Colloq. Publ., vol. 31, Providence, Rhode Island 1957; 3rd printing 1974.Google Scholar
  63. [Hol ]
    A.S. Holevo: Probabilistic and Statistical Aspects of the Quantum Theory, Nauka, Moscow 1980 (in Russian; English translation: North-Holland, Amsterdam 1982).Google Scholar
  64. [[ H ör]]
    L. Hörmander: The Analysis of Linear Partial Differential Operators III, Springer, Berlin 1985; corrected reprint 1994.MATHGoogle Scholar
  65. [[ Hor ]]
    S.S. Horužii: An Introduction to Algebraic Quantum Field Theory, Nauka, Moscow 1986 (in Russian; English translation: Kluwer, Dordrecht 1990).Google Scholar
  66. [[ v H ]]
    L. van Hove: Surcertaines représentations unitaires d‘un group infini des transformations, Memoires Acad. Royale de Belgique XXVI/6, Bruxelles 1951.Google Scholar
  67. [[ Hua 1 ]]
    K. Huang: Statistical Mechanics, Wiley, New York 1963.Google Scholar
  68. [[ Hua 2 ]]
    K. Huang: Quarks, Leptons and Gauge Fields, World Scientific, Singapore 1982.Google Scholar
  69. [[ Hur ]]
    N.E. Hurt: Geometric Quantization in Action, D. Reidel, Dordrecht 1983.MATHGoogle Scholar
  70. [ IZ ]
    C. Itzykson, J.—B. Zuber: Quantum Field Theory, McGraw—Hill, New York 1980.Google Scholar
  71. [[ Jar 1 ]]
    V. Jarn ík: Differential Calculus II, 3rd edition, Academia, Prague 1976 (in Czech).Google Scholar
  72. [[ Jar 2 ]]
    V. Jarník: Integral Calculus II, 2nd edition, Academia, Prague 1976 (in Czech).MATHGoogle Scholar
  73. [[Ja]]
    J.M. Jauch: Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA 1968.MATHGoogle Scholar
  74. [[ Jor ]]
    T.F. Jordan: Linear Operators for Quantum Mechanics, Wiley, New York 1969.MATHGoogle Scholar
  75. [[ J W ]]
    K. J örgens, J. Weidmann: Spectral Properties of Hamiltonian Operators, Lecture Notes in Mathematics, vol. 313, Springer, Berlin 1973.Google Scholar
  76. [ Kam ]
    E. Kamke: Differentialgleichungen realer Funktionen, Akademische Verlagsges-selschaft, Leipzig 1956.Google Scholar
  77. [[ Kas ]]
    D. Kastler, ed.: C‡-algebras and Their Applications to Statistical Mechanics and Quantum Field Theory, North—Holland, Amsterdam 1976.MATHGoogle Scholar
  78. [[ K a ]]
    T. Kato: Perturbation Theory for Linear Operators, Springer, 2nd edition, Berlin 1976; reprinted in 1995.MATHGoogle Scholar
  79. [[ Kel ]]
    J.L. Kelley: General Topology, Van Nostrand, Toronto 1957; reprinted by Springer, Graduate Texts in Mathematics, No. 27, New York 1975.Google Scholar
  80. [[ Kir ]]
    A.A. Kirillov: Elements of the Representation Theory, 2nd edition, Nauka, Moscow 1978 (in Russian; French translation: Mir, Moscow 1974).Google Scholar
  81. [[ KGv ]]
    A.A. Kirillov, A.D. Gvišiani: Theorems and Problems of Functional Analysis, Nauka, Moscow 1979 (in Russian; French translation: Mir, Moscow 1982).MATHGoogle Scholar
  82. [ KS ]
    J.R. Klauder, B.-S. Skagerstam, eds.: Coherent States. Applications in Physics and Mathematical Physics, World Scientific, Singapore 1985.MATHGoogle Scholar
  83. [[ Kli ]]
    W. Klingenberg: A Course in Differential Geometry, Springer, New York 1978.MATHGoogle Scholar
  84. [ KF ]]
    A.N. Kolmogorov, S.V. Fomin: Elements of Function Theory and Functional Analysis, 4th edition, Nauka, Moscow 1976 (in Russian; English translation of the 2nd ed.: Graylock 1961; French translation of the 3rd edition: Mir, Moscow 1974).Google Scholar
  85. [ Kuo ]
    H.-H. Kuo: Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, vol. 463, Springer, Berlin 1975.Google Scholar
  86. [ Ku ]
    A.G. Kuroš: Lectures on General Algebra, 2nd edition, Nauka, Moscow 1973 (in Russian).Google Scholar
  87. [ LL ]
    L.D. Landau, E.M. Lifšic: Quantum Mechanics. Nonrelativistic Theory, 3rd ed., Nauka, Moscow 1974 (in Russian; English translation: Pergamon, New York 1974).Google Scholar
  88. [ LP ]
    P.D. Lax, R.S. Phillips: Scattering Theory, Academic, New York 1967; 2nd edition, with appendices by C.S. Morawetz and G. Schmidt, 1989.Google Scholar
  89. [ LiL ]
    E.H. Lieb, M. Loss: Analysis, 2nd edition, Graduate Studies in Mathematics, vol. 14, AMS, Providence, RI, 2001Google Scholar
  90. [ LSW ]
    E.H. Lieb, B. Simon, A.S. Wightman, eds.: Studies in Mathematical Physics. Essays in Honor of V. Bargmann, Princeton University Press, Pinceton, NJ 1976.Google Scholar
  91. [[ Loe 1–3 ]]
    E.M. Loebl, ed.: Group Theory and Its Applications I–III, Academic, New York 1967.Google Scholar
  92. [ LCM ]]
    J.T. Londergan, J.P. Carini, D.P. Murdock: Binding and Scattering in Two-Dimensional Systems. Applications to Quantum Wires, Waveguides and Photonic Crystals, Springer LNP m60, Berlin 1999.MATHGoogle Scholar
  93. [[ Lud 1 ,2 ]]
    G. Ludwig: Foundations of Quantum Mechanics I, II, Springer, Berlin 1983,1985.Google Scholar
  94. [[ Lud 3 ]]
    G. Ludwig: An Axiomatic Basis for Quantum Mechanics, I. Derivation of Hilbert Space Structure, Springer, Berlin 1985.Google Scholar
  95. [[ LRSS ]]
    S. Lundquist, A. Ranfagni, Y. Sa—yakanit, L.S. Schulman: Path Summation: Achievements and Goals, World Scientific, Singapore 1988.Google Scholar
  96. [ Mac 1 ]]
    G. Mackey: Mathematical Foundations of Quantum Mechanics, Benjamin, New York 1963; reprinted by Dover Publications INC., Mineola, NY, 2004.MATHGoogle Scholar
  97. [ Mac 2 ]
    G. Mackey: Induced Representations of Groups and Quantum Mechanics, W.A. Benjamin, New York 1968.MATHGoogle Scholar
  98. [ MB ]
    S. MacLane, G. Birkhoff: Algebra, 2nd edition, Macmillan, New York 1979.Google Scholar
  99. [[ Mar ]]
    A.I. Markuševič: A Short Course on the Theory of Entire Functions, 2nd edition, Fizmatgiz, Moscow 1961 (in Russian; English translation: Amer. Elsevier 1966).Google Scholar
  100. [ Mas ]
    V.P. Maslov: Perturbation Theory and Asymptotic Methods, Moscow State University Publ., Moscow 1965 (in Russian; French translation: Dunod, Paris 1972).Google Scholar
  101. [ MF ]
    V.P. Maslov, M.V. Fedoryuk: Semiclassical Approximation to Quantum Mechanical Equations, Nauka, Moscow 1976 (in Russian).Google Scholar
  102. [ Mau ]
    K. Maurin: Hilbert Space Methods, PWN, Warsaw 1959 (in Polish; English translation: Polish Sci. Publ., Warsaw 1972).MATHGoogle Scholar
  103. [ Mes ]
    A. Messiah: M écanique quantique I, II, Dunod, Paris 1959 (English translation: North—Holland, Amsterdam 1961, 1963).Google Scholar
  104. [[ M ü l ]]
    C. Müller: Spectral Harmonics, Lecture Notes In Mathematics, vol. 17, Springer,Berlin 1966.Google Scholar
  105. [ Nai 1]]
    M.A. Naimark: Normed Rings, 2nd edition, Nauka, Moscow 1968 (in Russian; English translation: Wolters—Noordhoff, Groningen 1972).Google Scholar
  106. [ Nai 2 ]
    M.A. Naimark: Linear Differential Operators, 2nd edition, Nauka, Moscow 1969 (in Russian; English translation of the 1st edition: Harrap & Co., London 1967, 1968).Google Scholar
  107. [ Nai 3]]
    M.A. Naimark:Group Representation Theory, Nauka, Moscow 1976 (in Russian; French translation: Mir, Moscow 1979).Google Scholar
  108. [[ v N ]]
    J. von Neumann : Mathematische Grundlagen der Quantenmechanik, Springer Verlag, Berlin 1932 (English translation: Princeton University Press, Princeton, NJ 1955, reprinted 1996).MATHGoogle Scholar
  109. [[ New ]]
    R.G. Newton: Scattering Theory of Waves and Particles, 2nd edition, Springer Verlag, New York 1982; reprinted by Dover Publications Inc., Mineola, NY 2002.MATHGoogle Scholar
  110. [ OK ]
    Y. Ohnuki, S. Kamefuchi: Quantum Field Theory and Parastatistics, Springer, Heidelberg 1982.MATHGoogle Scholar
  111. [[ Par ]]
    K.R. Parthasarathy: Introduction to Probability and Measure, New Delhi 1980.Google Scholar
  112. [ Pea ]
    D.B. Pearson: Quantum Scattering and Spectral Theory, Techniques of Physics, vol. 9, Academic, London 1988.Google Scholar
  113. [[ Pe ]]
    P. Perry; Scattering Theory by the Enss Method, Harwood, London 1983.MATHGoogle Scholar
  114. [ Pir ]
    C. Piron: Foundations of Quantum Physics, W.A. Benjamin, Reading, MA 1976.MATHGoogle Scholar
  115. [[Pon]]
    L.S.Pontryagin:ContinuousGroups,3rd edition,Nauka,Moscow1973(inRussian; English translation of the 2nd edition: Gordon and Breach, New York 1966).Google Scholar
  116. [[ Pop ]]
    V.S. Popov: Path Integrals in Quantum Theory and Statistical Physics, Atom-izdat, Moscow 1976 (in Russian; English translation: D. Reidel, Dordrecht 1983).Google Scholar
  117. [[ Pru ]]
    E. Prugovečki: Quantum Mechanics in Hilbert Space, 2nd edition, Academic, New York 1981.MATHGoogle Scholar
  118. [[RS 1–4 ]]
    M. Reed, B. Simon: Methods of Modern Mathematical Physics, I. Functional Analysis, II. Fourier Analysis. Self—Adjointness, III. Scattering Theory, IV. Analysis of Operators, Academic, New York 1972–79.Google Scholar
  119. [[ Ri 1 ]]
    D.R. Richtmyer: Principles of Advanced Mathematical Physics I, Springer, New York 1978.MATHGoogle Scholar
  120. [ RN ]
    F. Riesz, B. Sz.—Nagy: Lecons d'analyse fonctionelle, 6me edition, Akademic Kiadó, Budapest 1972.Google Scholar
  121. [[ Ru 1 ]]
    W. Rudin: Real and Complex Analysis, 3rd edition, McGraw—Hill, New York 1987.MATHGoogle Scholar
  122. [[ Ru 2 ]]
    W. Rudin: Functional Analysis, 2nd edition, McGraw—Hill, New York 1991.MATHGoogle Scholar
  123. [[ Šab ]]
    B.V. Šabat: Introduction to Complex Analysis, Nauka, Moscow 1969 (in Russ.).Google Scholar
  124. [[ Sa ]]
    S. Sakai: C*—Algebras and W*—Algebras, Springer, Berlin 1971.Google Scholar
  125. [[Sch]]
    R.Schatten: A Theoryof CrossSpaces,Princeton UniversityPress, Princeton,1950.Google Scholar
  126. [[ Sche ]]
    M. Schechter: Operator Methods in Quantum Mechanics, North—Holland, New York 1981; reprinted by Dover Publications Inc., Mineola, NY 2002.MATHGoogle Scholar
  127. [[ Schm ]]
    K. Schmüdgen: Unbounded Operator Algebras and Representation Theory, Akademie—Verlag, Berlin 1990.Google Scholar
  128. [[ Schu ]]
    L.S. Schulman: Techniques and Applications of Path Integration, Wiley—Inter-science, New York 1981.MATHGoogle Scholar
  129. [[ Schw 1 ]]
    L. Schwartz: Théorie des distributions I, II, Hermann, Paris 1957, 1959.Google Scholar
  130. [[ Schw 2 ]]
    L. Schwartz: Analyse Mathématique I, II, Hermann, Paris 1967.Google Scholar
  131. [[ Schwe ]]
    S.S. Schweber: An Introduction to Relativistic Quantum Field Theory, Row, Peterson & Co., Evanston, IL 1961.Google Scholar
  132. [[ Seg ]]
    I.E. Segal: Mathematical Problems of Relativistic Physics, with an appendix by G.W. Mackey, Lectures in Appl. Math., vol. 2, American Math. Society, Providence, RI 1963.Google Scholar
  133. [[ Sei ]]
    E. Seiler: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Physics, vol. 159, Springer, Berlin 1982.Google Scholar
  134. [[ Si 1 ]]
    B. Simon: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ 1971.MATHGoogle Scholar
  135. [[Si 2]]
    B. Simon: The P(Φ)2 Euclidian (Quantum) Field Theory, Princeton University Press, Princeton, NJ 1974.Google Scholar
  136. [[ Si 3 ]]
    B. Simon: Trace Ideals and Their Applications, Cambridge University Press, Cambridge 1979.MATHGoogle Scholar
  137. [[ Si 4 ]]
    B. Simon: Functional Integration and Quantum Physics, Academic, New York 1979; 2nd edition, AMS Chelsea Publishing, Providence, RI 2005.MATHGoogle Scholar
  138. [ Sin ]
    Ya.G. Sinai: Theory of Phase Transitions. Rigorous Results, Nauka, Moscow 1980 (in Russian).Google Scholar
  139. [[ Šir ]
    A.N. Širyaev: Probability, Nauka, Moscow 1980 (in Russian).Google Scholar
  140. [ SF ]
    A.A. Slavnov, L.D. Faddeev: Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow 1978 .(in Russian).Google Scholar
  141. [[ Stock ]]
    H.-J. Stöckmann: Quantum chaos. An introduction, Cambridge University Press, Cambridge, 1999.MATHGoogle Scholar
  142. [[Stol]]
    P. Stollmann: Caught by Disorder: Bound States in Random Media, Birkhäuser, Basel 2001.MATHGoogle Scholar
  143. [[ Sto ]]
    M.H. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, Amer. Math. Colloq. Publ., vol. 15, New York 1932.Google Scholar
  144. [[ Str ]]
    R.F. Streater, ed.: Mathematics of Contemporary Physics, Academic, London 1972.Google Scholar
  145. [[ SW ]]
    R.F. Streater, A. Wightman: PCT, Spin, Statistics and All That, W.A. Benjamin, New York 1964.Google Scholar
  146. [[ Šv ]]
    A.S. Švarc: Mathematical Foundations of the Quantum Theory, Atomizdat, Moscow 1975 (in Russian).Google Scholar
  147. [[ Tay ]]
    A.E. Taylor: Introduction to Functional Analysis, 6th edition, Wiley, New York 1967.Google Scholar
  148. [[ Ta ]]
    J.R. Taylor: Scattering Theory. The Quantum Theory of Nonrelativistic Collisions, Wiley, New York 1972.Google Scholar
  149. [[ Te ]]
    G. Teschl: Jacobi operators and completely integrable nonlinear lattices, Math. Surveys and Monographs, vol. 72; AMS, Providence, RI 2000.Google Scholar
  150. [ Tha ]
    B. Thaller: The Dirac Equation, Springer, Berlin 1992.Google Scholar
  151. [ Thi 3,4 ]
    W. Thirring: A Course in Mathematical Physics, 3. Quantum Mechanics of Atoms and Molecules, 4. Quantum Mechanics of Large Systems, Springer, New York 1981, 1983.Google Scholar
  152. [ Ti ]
    V.M. Tikhomirov: Banach Algebras, an appendix to the monograph [[ KF ]] pp. 513–528 (in Russian).Google Scholar
  153. [[ Vai ]]
    B.R. Vainberg: Asymptotic methods in the Equations of Mathematical Physics, Moscow State University Publishing, Moscow 1982 (in Russian).Google Scholar
  154. [[ Var 1,2 ]]
    V.S. Varadarajan: Geometry of Quantum Theory I, II, Van Nostrand Reinhold, New York 1968, 1970.Google Scholar
  155. [[ Vot ]]
    V. Votruba: Foundations of the Special Theory of Relativity, Academia, Prague 1969 (in Czech).Google Scholar
  156. [[ WEG ]]
    R. Weder, P. Exner, B. Grebert, eds.: Mathematical Results in Quantum Mechanics, Contemporary Mathematics, vol. 307, AMS, Providence, RI 2002.Google Scholar
  157. [[ W e ]]
    J. Weidmann: .Linear Operators in Hilbert Space, Springer, Heidelberg 1980 (2nd edition in German: Lineare Operatoren in Hilberträumen, I. Grundlagen, II. Anwendungen, B.G. Teubner, Stuttgart 2000, 2003).Google Scholar
  158. [[ Wig ]]
    E.P. Wigner: Symmetries and Reflections, Indiana University Press, Blooming-ton, IN 1971.Google Scholar
  159. [[ Y a ]]
    D.R. Yafaev: Mathematical Scattering Theory: General Theory, Transl. Math. Monographs, vol. 105; AMS, Providence, RI, 1992Google Scholar
  160. [Yo]]
    K. Yosida: Functional Analysis, 3rd edition,Springer, Berlin 1971.MATHGoogle Scholar
  161. [Žel]]
    D.P. Želobenko: Compact Lie Groups and Their Representations, Nauka, Moscow 1970 (in Russian).Google Scholar

b) Research and review papers:

  1. [ACFGH 1]
    A. Abrams, J. Cantarella, J.G. Fu, M. Ghomi, R. Howard: Circles minimize most knot energies, Topology 42 (2003), 381–394.MATHMathSciNetCrossRefGoogle Scholar
  2. [Adl 1 ]
    S.L. Adler: Quaternionic quantum field theory, Commun. Math. Phys. 104 (1986), 611–656.MATHADSCrossRefGoogle Scholar
  3. [AD 1 ]
    D. Aerts, I. Daubechies: Physical justification for using the tensor product to describe two quantum systems as one joint system, Helv. Phys. Acta 51 (1978),661–675.MathSciNetGoogle Scholar
  4. [AD 2]
    D. Aerts, I. Daubechies: A mathematical condition for a sublattice of a propo-sitional system to represent a physical subsystem, with a physical interpretation,Lett. Math. Phys. 3 (1979), 19–27.MATHADSMathSciNetCrossRefGoogle Scholar
  5. [AF 1 ]
    J. Agler, J. Froese: Existence of Stark ladder resonances, Commun. Math.Phys. 100 (1985), 161–172.MATHADSMathSciNetCrossRefGoogle Scholar
  6. [AHS 1]
    S. Agmon, I. Herbst, E. Skibsted: Perturbation of embedded eigenvalues in the generalized N —body problem, Commun. Math. Phys. 122 (1989), 411–438.MATHADSMathSciNetCrossRefGoogle Scholar
  7. [AC 1 ]
    J. Aguilar, J.—M. Combes: A class of analytic perturbations for one—body Schrödinger Hamiltonians, Commun. Math. Phys. 22 (1971), 269–279.MATHADSMathSciNetCrossRefGoogle Scholar
  8. [AAAS 1 ]
    E. Akkermans, A. Auerbach, J. Avron, B. Shapiro: Relation between persistent currents and the scattering matrix, Phys. Rev. Lett. 66 (1991), 76–79.ADSCrossRefGoogle Scholar
  9. [ADH 1 ]
    S. Alama, P. Deift, R. Hempel: Eigenvalue branches of Schrodinger operator H — λW in a gap of σ(H), Commun. Math. Phys. 121 (1989), 291–321.MATHADSMathSciNetCrossRefGoogle Scholar
  10. [Al 1 ]
    S. Albeverio: On bound states in the continuum of N—body systems and the virial theorem, Ann. Phys. 71 (1972), 167–276.ADSCrossRefGoogle Scholar
  11. [ACF 1]
    S. Albeverio, C. Cacciapuoti, D. Finco: Coupling in the singular limit of thin quantum waveguides, J. Math. Phys. 48 (2007), 032103.ADSMathSciNetCrossRefGoogle Scholar
  12. [AH 1]
    S. Albeverio, R. Høegh—Krohn: Oscillatory integrals and the method of stationary phase, Inventiones Math. 40 (1977), 59–106.MATHADSCrossRefGoogle Scholar
  13. [AN 1 ]
    S. Albeverio, L. Nizhnik: Approximation of general zero-range potentials,Ukrainian Math. J. 52 (2000), 582–589.MATHMathSciNetCrossRefGoogle Scholar
  14. [AmC 1 ]
    W.O. Amrein, M.B. Cibils: Global and Eisenbud—Wigner time delay in scattering theory, Helv. Phys. Acta 60 (1987), 481–500.MathSciNetGoogle Scholar
  15. [AG 1]
    W.O. Amrein, V. Georgescu: Bound states and scattering states in quantum mechanics, Helv. Phys. Acta 46 (1973), 635–658.MathSciNetGoogle Scholar
  16. [And 1 ]
    J. Anderson: Extensions, restrictions and representations of C*—algebras,Trans. Am. Math. Soc. 249 (1979), 303–329.MATHCrossRefGoogle Scholar
  17. [AGS 1 ]
    J.—P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A20 (1987), 3687–3712.ADSMathSciNetGoogle Scholar
  18. [AIT 1 ]
    J.—P. Antoine, A. Inoue, C. Trapani: Partial *—algebras of closed operators,I. Basic theory and the Abelian case, Publ. RIMS 26 (1990), 359–395.MATHMathSciNetGoogle Scholar
  19. [ AK 1 ]
    J.—P. Antoine, W. Karwowski: Partial *—algebras of Hilbert space operators,in Proceedings of the 2nd Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics (H. Baumgärtel et al., eds.), Teubner, Leipzig 1984;pp. 29–39.Google Scholar
  20. [ AKa 1 ]
    A. Arai, H. Kawano: Enhanced binding in a general class of quantum field models, Rev. Math. Phys. 15 (2003), 387–423.MATHMathSciNetCrossRefGoogle Scholar
  21. [ Ara 1 ]
    H. Araki: Type of von Neumann algebra associated with free field, Progr.Theor. Phys. 32 (1964), 956–965.MATHADSMathSciNetCrossRefGoogle Scholar
  22. [ Ara 2 ]
    H. Araki: C*—approach in quantum field theory, Physica Scripta 24 (1981),981–985.MathSciNetCrossRefGoogle Scholar
  23. [AJ 1]
    H. Araki, J.—P. Jurzak: On a certain class of *—algebras of unbounded operators,Publ. RIMS 18 (1982), 1013–1044.MATHMathSciNetGoogle Scholar
  24. [AMKG 1 ]
    H. Araki, Y. Munakata, M. Kawaguchi, T. Goto: Quantum Field Theory of Unstable Particles, Progr. Theor. Phys. 17 (1957), 419–442.MATHADSMathSciNetCrossRefGoogle Scholar
  25. [ArJ 1]
    D. Arnal, J.—P. Jurzak: Topological aspects of algebras of unbounded operators,.J. Funct. Anal. 24 (1977), 397–425.MATHMathSciNetCrossRefGoogle Scholar
  26. [ADE 1]
    J. Asch, P. Duclos, P. Exner: Stability of driven systems with growing gaps.Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053–1069.MATHMathSciNetCrossRefGoogle Scholar
  27. [AB 1]
    M.S. Ashbaugh, R.D. Benguria: Optimal bounds of ratios of eigenvalues of one—dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Commun. Math. Phys. 124 (1989), 403–415.MATHADSMathSciNetCrossRefGoogle Scholar
  28. [ AB 2 ]
    M.S. Ashbaugh, R.D. Benguria: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601–628.MathSciNetCrossRefGoogle Scholar
  29. [AE 1]
    M.S. Ashbaugh, P. Exner: Lower bounds to bound state energies in bent tubes,Phys. Lett. A150 (1990), 183–186.ADSMathSciNetGoogle Scholar
  30. [AsH 1]
    M.S. Ashbaugh, E.M. Harrell II : Perturbation theory for resonances and large barrier potentials, Commun. Math. Phys. 83 (1982), 151–170.MATHADSMathSciNetCrossRefGoogle Scholar
  31. [ AsHS 1]
    M.S. Ashbaugh, E.M. Harrell II, R. Svirsky: On the minimal and maximal eigenvalue gaps and their causes, Pacific J. Math. 147 (1991), 1–24.MATHMathSciNetGoogle Scholar
  32. [ AS 1 ]
    M.S. Ashbaugh, C. Sundberg: An improved stability result for resonances,Trans. Am. Math. Soc. 281 (1984), 347–360.MATHMathSciNetCrossRefGoogle Scholar
  33. [ AJI 1 ]
    A. Avila, S. Jitomirskaya: Solving the ten Martini problem, Lecture Notes in Physics 690(2006), 5–16.MathSciNetCrossRefADSGoogle Scholar
  34. [ ABGM 1 ]
    Y. Avishai, D. Bessis, B.M. Giraud, G. Mantica: Quantum bound states in open geometries, Phys. Rev. B44 (1991), 8028–8034.ADSGoogle Scholar
  35. [ Avr 1]
    J. Avron: The lifetime of Wannier ladder states, Ann. Phys. 143 (1982), 33–53.ADSCrossRefGoogle Scholar
  36. [ AEL 1]
    J. Avron, P. Exner, Y. Last: Periodic Schrödinger operators with large gaps and Wannier—Stark ladders, Phys. Rev. Lett. 72 (1994), 896–899.MATHADSCrossRefGoogle Scholar
  37. [ ARZ 1 ]
    J. Avron, A. Raveh, B. Zur: Adiabatic quantum transport in multiply connected systems, Rev. Mod. Phys. 60 (1988), 873–915.ADSMathSciNetCrossRefGoogle Scholar
  38. [ ASY 1 ]
    J. Avron, R. Seiler, L.G. Yaffe: Adiabatic theorem and application to the quantum Hall effect, Commun. Math. Phys. 110 (1987), 33–49.MATHADSMathSciNetCrossRefGoogle Scholar
  39. [BB 1]
    D. Babbitt, E. Balslev: Local distortion techniques and unitarity of the S—matrix for the 2—body problem, J. Math. Anal. Appl. 54 (1976), 316–349.MathSciNetCrossRefGoogle Scholar
  40. [ BFS 1 ]
    V. Bach, J. Fröhlich, I.M. Sigal: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys. 207(1999), 249–290.MATHADSCrossRefGoogle Scholar
  41. [ Ba 1 ]
    V. Bargmann: On a Hilbert space of analytical functions and an associate integral transform I, II, Commun. Pure Appl. Math. 14 (1961), 187–214; 20 (1967),1–101.MATHMathSciNetCrossRefGoogle Scholar
  42. [ Ba 2 ]
    V. Bargmann: Remarks on Hilbert space of analytical functions, Proc. Natl.Acad. Sci. USA 48 (1962), 199–204, 2204.MATHADSMathSciNetCrossRefGoogle Scholar
  43. [Ba 3]
    V. Bargmann: On unitary ray representations of continuous groups, Ann. Math.59 (1954), 1–46.MathSciNetCrossRefGoogle Scholar
  44. [ Ba 4 ]
    V. Bargmann: Note on some integral inequalities, Helv. Phys. Acta 45 (1972),249–257.Google Scholar
  45. [Ba 5]
    V. Bargmann: On the number of bound states in a central field of forces, Proc.Natl. Acad. Sci. USA 38 (1952), 961–966.MATHADSMathSciNetCrossRefGoogle Scholar
  46. [BFF1]
    F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer: Deformation theory and quantization I, II, Ann. Phys. 111 (1978), 61–110, 111–151.MATHADSMathSciNetCrossRefGoogle Scholar
  47. [ Bau 1 ]
    H. Baumgärtel: Partial resolvent and spectral concentration, Math. Nachr. 69(1975), 107–121.MATHMathSciNetCrossRefGoogle Scholar
  48. [ BD 1 ]
    H. Baumgärtel, M. Demuth: Perturbation of unstable eigenvalues of finite multiplicity, J. Funct. Anal. 22 (1976), 187–203.MATHCrossRefGoogle Scholar
  49. [ BDW 1 ]
    H. Baumgärtel, M. Demuth, M. Wollenberg: On the equality of resonances(poles of the scattering amplitude) and virtual poles, M. Nachr. 86 (1978), 167–174.MATHCrossRefGoogle Scholar
  50. [Beh 1]
    H. Behncke: The Dirac equation with an anomalous magnetic moment, Math.Z. 174 (1980), 213–225.MATHMathSciNetCrossRefGoogle Scholar
  51. [BF 1]
    F.A. Berezin, L.D. Faddeev: A remark on Schrödinger's equation with a singular potential, Sov. Acad. Sci. Doklady 137 (1961), 1011–1014 (in Russian).MathSciNetGoogle Scholar
  52. [vdB 1]
    M. van den Berg: On the spectral counting function for the Dirichlet Laplacian,J. Funct. Anal. 107 (1992), 352–361.MATHMathSciNetCrossRefGoogle Scholar
  53. [Be 1]
    M.V. Berry: Quantal phase factor accompanying adiabatic changes, Proc. Roy.Soc. London A392 (1984), 45–57.ADSMathSciNetGoogle Scholar
  54. [ Be 2 ]
    M.V. Berry: The adiabatic limit and the semiclassical limit, J. Phys. A17(1984), 1225–1233.ADSMathSciNetGoogle Scholar
  55. [ BM 1 ]
    M.V. Berry, K.E. Mount: Semiclassical approximations in wave mechanics,Rep. Progr. Phys. 35 (1972), 315–389.ADSCrossRefGoogle Scholar
  56. [ BN 1 ]
    A. Beskow, J. Nilsson: The concept of wave function and the irreducible representations of the Poincaré group, II. Unstable systems and the exponential decay law, Arkiv f¨ör Physik 34 (1967), 561–569.Google Scholar
  57. [ BvN 1 ]
    G. Birkhoff, J. von Neumann: The logic of quantum mechanics, Ann. Math.37 (1936), 823–843.CrossRefGoogle Scholar
  58. [ Bir 1 ]
    M.Š. Birman: On the spectrum of singular boundary problems, Mat. Sbornik 55 (1961), 125–174 (in Russian).MathSciNetGoogle Scholar
  59. [ Bir 2 ]
    M.Š. Birman: Existence conditions for the wave operators, Doklady Acad. Sci.USSR 143 (1962), 506–509 (in Russian).MathSciNetGoogle Scholar
  60. [ Bir 3 ]
    M.Š. Birman: An existence criterion for the wave operators. Izvestiya Acad.Sci. USSR, ser. mat. 27 (1963), 883–906 (in Russian).MATHMathSciNetGoogle Scholar
  61. [Bir 4]
    M.Š. Birman: A local existence criterion for the wave operators, Izvestiya Acad.Sci. USSR, ser. mat. 32 (1968), 914–942 (in Russian).MATHMathSciNetGoogle Scholar
  62. [BE 1]
    J. Blank, P. Exner: Remarks on tensor products and their applications in quantum theory, I. General considerations, II. Spectral properties, Acta Univ. Carolinae, Math. Phys. 17 (1976), 75–89; 18 (1977), 3–35.MATHMathSciNetGoogle Scholar
  63. [BEH 1]
    J. Blank, P. Exner, M. Havlíček: Quantum—mechanical pseudo—Hamiltonians, Czech. J. Phys. B29 (1979), 1325–1341.ADSCrossRefGoogle Scholar
  64. [ BGS 1 ]
    R. Blankenbecler, M.L. Goldberger, B. Simon: The bound states of weakly coupled long—range one—dimensional Hamiltonians, Ann. Phys. 108 (1977), 69–78.ADSMathSciNetCrossRefGoogle Scholar
  65. [BChK 1]
    D. Bollé, K. Chadan, G. Karner: On a sufficient condition for the existence of N—particle bound states, J. Phys. A19 (1986), 2337–2343.ADSGoogle Scholar
  66. [ Bor 1 ]
    H.J. Borchers: Algebras of unbounded operators in quantum field theory, Physica 124A (1984), 127–144.ADSMathSciNetGoogle Scholar
  67. [ BoE 1 ]
    D. Borisov, P. Exner: Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A37 (2004), 3411–3428.ADSMathSciNetGoogle Scholar
  68. [ BEG 1 ]
    D. Borisov, P. Exner, R. Gadyl'shin: Geometric coupling thresholds in a two—dimensional strip, J. Math. Phys. 43 (2002), 6265–6278.MATHADSMathSciNetCrossRefGoogle Scholar
  69. [ BEGK 1]
    D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřík: Bound states in weakly deformed strips and layers, Ann. H. Poincaré 2 (2001), 553–572.MATHCrossRefGoogle Scholar
  70. [ BCGH 1 ]
    F. Boudjeedaa, L. Chetouani, L. Guechi, T.F. Hamman: Path integral treatment for a screened potential, J. Math. Phys. 32 (1991), 441–446.ADSMathSciNetCrossRefGoogle Scholar
  71. [ BEKŠ 1 ]
    J. Brasche, P. Exner, Yu. Kuperin, P. Šeba: Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184 (1994), 112–139.MATHMathSciNetCrossRefGoogle Scholar
  72. [ BrT 1 ]
    J. Brasche, A. Teta: Spectral analysis and scattering theory for Schrödinger operators with an interaction supported by regular curve, in the proceedings volume [[ AFHL ]], pp. 197–211.Google Scholar
  73. [EBG 1]
    J. Brüning, P. Exner, V. Geyler: Large gaps in point—coupled periodic systems of manifolds, J. Phys. A: Math. Gen. 36 (2003), 4875–4890.MATHADSCrossRefGoogle Scholar
  74. [ BG 1 ]
    J. Brüning, V.A. Geyler: Scattering on compact manifolds with infinitely thin horns, J. Math. Phys. 44 (2003), 371–405.MATHADSMathSciNetCrossRefGoogle Scholar
  75. [ BGMP 1 ]
    J. Brüning, V.A. Geyler, V.A. Margulis, M.A. Pyataev: Ballistic conductance of a quantum sphere, J. Phys. A35 (2002), 4239–4247.ADSGoogle Scholar
  76. [BGP 1]
    J. Brüning, V. Geyler, K. Pankrashkin: Cantor and band spectra for periodic quantum graphs with magnetic fields, Commun. Math. Phys. 269 (2007), 87–105.MATHADSCrossRefGoogle Scholar
  77. [ BFS 1 ]
    D.C. Brydges, J. Fröhlich, A. Sokal: A new proof of existence and nontriviality of the continuum Φ4 2 and Φ4 3 quantum field theories, Commun. Math. Phys. 91 (1983), 141–186.ADSCrossRefGoogle Scholar
  78. [ BEPS 1 ]
    E.N. Bulgakov, P. Exner, K.N. Pichugin, A.F. Sadreev: Multiple bound states in scissor—shaped waveguides, Phys. Rev. B66 (2002), 155109ADSGoogle Scholar
  79. [BGRS 1]
    W. Bulla, F. Gesztesy, W. Renger, B. Simon: Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc. 127 (1997), 1487–1495.MathSciNetCrossRefGoogle Scholar
  80. [BT 1]
    W. Bulla, T. Trenkler: The free Dirac operator on compact and non—compact graphs, J. Math. Phys. 31 (1990), 1157–1163.MATHADSMathSciNetCrossRefGoogle Scholar
  81. [BW 1]
    L.J. Bunce, J.D.M. Wright: Quantum measures and states on Jordan algebras, Commun. Math. Phys. 98 (1985), 187–202.MATHADSMathSciNetCrossRefGoogle Scholar
  82. [ BuD 1 ]
    V.S. Buslaev, L. Dmitrieva: Bloch electrons in an external electric field, Leningrad Math. J. 1 (1991), 287–320.MathSciNetGoogle Scholar
  83. Bü 1 ]
    M. Büttiker: Small normal—metal loop coupled to an electron reservoir, Phys. Rev. B32 (1985), 1846–1849.ADSGoogle Scholar
  84. [Bü 2]
    M. Büttiker: Absence of backscattering in the quantum Hall effect in multiprobeconductors, Phys. Rev. B38 (1988), 9375–9389.ADSGoogle Scholar
  85. [CaE 1 ]
    C. Cacciapuoti, P. Exner: Nontrivial edge coupling from a Dirichlet networksqueezing: the case of a bent waveguide, J. Phys. A40 (2007), F511–F523.ADSMathSciNetGoogle Scholar
  86. [Ca 1]
    J.W. Calkin: Two—sided ideals and congruence in the ring of bounded operators in Hilbert space, Ann. Math. 42 (1941), 839–873.MathSciNetCrossRefGoogle Scholar
  87. [Cal 1 ]
    F. Calogero: Upper and lower limits for the number of bound states in a given central potential, Commun. Math. Phys. 1 (1965), 80–88.MATHADSMathSciNetCrossRefGoogle Scholar
  88. [Cam 1 ]
    R.H. Cameron: A family of integrals serving to connect the Wiener Feynman integrals,J. Math. Phys. 39 (1961), 126–141.Google Scholar
  89. [Cam 2]
    R.H. Cameron: The Ilstow and Feynman integrals, J d'Analyse Math. 10(1962–63), 287–361.CrossRefGoogle Scholar
  90. [Cam 3]
    R.H. Cameron: Approximation to certain Feynman integrals, J. d'Analyse Math. 21 (1968), 337–371.MATHGoogle Scholar
  91. [CLM 1 ]
    J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock: Bound states and resonances in quantum wires, Phys. Rev. B46 (1992), 15538–15541.ADSGoogle Scholar
  92. [CLM 2]
    J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock: Multiple bound states in sharply bent waveguides, Phys. Rev. B48 (1993), 4503–4514.ADSGoogle Scholar
  93. [CLMTY 1,2]
    J.P. Carini, J.T. Londergan, D.P. Murdock, D. Trinkle, C.S. Yung: Bound states in waveguides and bent quantum wires, I. Applications to waveguide systems, II. Electrons in quantum wires, Phys. Rev. B55 (1997), 9842–9851, 9852–9859.ADSGoogle Scholar
  94. [CMS 1 ]
    R. Carmona, W.Ch. Masters, B. Simon: Relativistic Schrodinger operators, J. Funct. Anal. 91 (1990), 117–142.MATHMathSciNetCrossRefGoogle Scholar
  95. [CEK 1]
    G. Carron, P. Exner, D. Krejčiřík: Topologically non—trivial quantum layers, J. Math. Phys. 45 (2004), 774–784.MATHADSMathSciNetCrossRefGoogle Scholar
  96. [CG 1]
    G. Casati, I. Guarneri: Non—recurrent behaviour in quantum dynamics, Commun. Math. Phys. 95 (1984), 121–127.MATHADSMathSciNetCrossRefGoogle Scholar
  97. [CM 1]
    D. Castrigiano, U. Mutze: On the commutant of an irreducible set of operators in a real Hilbert space, J. Math. Phys. 26 (1985), 1107–1110.MATHADSMathSciNetCrossRefGoogle Scholar
  98. [ CEH 1 ]
    I. Catto, P. Exner, Ch. Hainzl: Enhanced binding revisited for a spinless particle in non-relativistic QED, J. Math. Phys. 45 (2004), 4174–4185.MATHADSMathSciNetCrossRefGoogle Scholar
  99. [ChD 1]
    K. Chadan, Ch. DeMol: Sufficient conditions for the existence of bound states in a potential without a spherical symmetry, Ann. Phys. 129 (1980), 466–478.MATHADSMathSciNetCrossRefGoogle Scholar
  100. [ CRWP 1 ]
    V. Chandrasekhar, M.J. Rooks, S. Wind, D.E. Prober: Observation of Aharonov-Bohm electron interference effects with periods h/e and h/2e in individual micron-size, normal-metal rings, Phys. Rev. Lett. 55 (1985), 1610–1613.ADSCrossRefGoogle Scholar
  101. [ CVV 1 ]
    T. Chen, V. Vougalter, S. Vugalter: The increase of binding energy and enhanced binding in nonrelativistic QED, J. Math. Phys. 44 (2003), 1961–1970.MATHADSMathSciNetCrossRefGoogle Scholar
  102. [ CDFK 1 ]
    P. Chenaud, P. Duclos, P. Freitas, D. Krejčiřík: Geometrically induced discrete spectrum in curved tubes, Diff. Geom. Appl. 23 (2005), 95–105.MATHCrossRefGoogle Scholar
  103. [ CE 1 ]
    T. Cheon, P. Exner: An approximation to δ' couplings on graphs, J. Phys. A37 (2004), L329–335.ADSMathSciNetGoogle Scholar
  104. CS 1 ]
    T. Cheon, T. Shigehara: Realizing discontinuous wave functions with renor-malized short-range potentials, Phys. Lett. A243 (1998), 111–116.ADSGoogle Scholar
  105. [Che 1 ]
    S. Cheremshantsev: Hamiltonians with zero—range interactions supported by a Brownian path, Ann. Inst. H. Poincaré: Phys. Théor. 56 (1992), 1–25.MATHMathSciNetGoogle Scholar
  106. [Cher 1 ]
    P.R. Chernoff: A note on product formulas for operators, J. Funct. Anal. 2 (1968), 238–242.MATHMathSciNetCrossRefGoogle Scholar
  107. [ ChH 1 ]
    P.R. Chernoff, R.Hughes: A new class of point interactions in one dimension, J. Funct. Anal. 111(1993), 97–117.MATHMathSciNetCrossRefGoogle Scholar
  108. [CH 1]
    L. Chetouani, F.F. Hamman: Coulomb's Green function in an n—dimensional Euclidean space, J. Math. Phys. 27 (1986), 2944–2948.MATHADSMathSciNetCrossRefGoogle Scholar
  109. [ CCH 1 ]
    L. Chetouani, A. Chouchaoui, T.F. Hamman: Path integral solution for the Coulomb plus sector potential, Phys. Lett. A161 (1991), 87–97.ADSGoogle Scholar
  110. [ CdV 1 ]
    Y. Colin de Verdière: Bohr—Sommerfeld rules to all orders, Ann. H. Poincaré 6 (2005), 925–936.MATHCrossRefGoogle Scholar
  111. [CRRS 1]
    Ph. Combe, G. Rideau, R. Rodriguez, M. Sirugue—Collin: On the cylindrical approximation to certain Feynman integrals, Rep. Math. Phys. 13(1978), 279–294.MATHMathSciNetCrossRefADSGoogle Scholar
  112. [ CDS 1 ]
    J.—M. Combes, P. Duclos, R. Seiler: Krein's formula and one—dimensional multiple well, J. Funct. Anal. 52 (1983), 257–301.MATHMathSciNetCrossRefGoogle Scholar
  113. [ CDKS 1]
    J.—M. Combes, P. Duclos, M. Klein, R. Seiler: The shape resonance, Commun. Math. Phys. 110 (1987), 215–236.MATHADSMathSciNetCrossRefGoogle Scholar
  114. [ CoH 1 ]
    J.—M. Combes, P.D. Hislop: Stark ladder resonances for small electric fields, Commun. Math. Phys. 140 (1991), 291–320.MATHADSMathSciNetCrossRefGoogle Scholar
  115. [ Com 1 ]
    M. Combescure: Spectral properties of periodically kicked quantum Hamiltonians, J. Stat. Phys. 59 (1990), 679–690.MATHADSMathSciNetCrossRefGoogle Scholar
  116. [ Co 1 ]
    J. Conlon: The ground state of a Bose gas with Coulomb interaction I, II, Commun. Math. Phys. 100 (1985), 355–379; 108 (1987), 363–374.ADSMathSciNetCrossRefGoogle Scholar
  117. [ CLY 1 ]
    J.G. Conlon, E.H. Lieb, H.—T. Yau: The N 7/5 law for charged bosons, Commun. Math. Phys. 116 (1988), 417–488.ADSMathSciNetCrossRefGoogle Scholar
  118. [ Con 1 ]
    A. Connes: The Tomita—Takesaki theory and classification of type III factors, in the proceedings volume [[ Kas ]], pp. 29–46.Google Scholar
  119. [ Coo 1 ]
    J.M. Cook: The mathematics of second quantization, Trans. Am. Math. Soc. 74 (1953), 222–245.MATHCrossRefGoogle Scholar
  120. [Coo 2]
    J.M. Cook: Convergence of the Møller wave matrix, J. Math. Phys. 36 (1957), 82–87.Google Scholar
  121. [ CJM 1 ]
    H. Cornean, A. Jensen, V. Moldoveanu: A rigorous proof for the Landauer-Büttiker formula, J. Math. Phys. 46 (2005), 042106.ADSMathSciNetCrossRefGoogle Scholar
  122. [ CMF 1 ]
    F.A.B. Coutinho, C.P. Malta, J. Fernando Perez: Sufficient conditions for the existence of bound states of N particles with attractive potentials, Phys. Lett. 100A (1984), 460–462.ADSMathSciNetGoogle Scholar
  123. [Chri 1]
    E. Christensen: Measures on projections and physical states, Commun. Math. Phys. 86 (1982), 529–538.MATHADSMathSciNetCrossRefGoogle Scholar
  124. [ Cra 1 ]
    R.E. Crandall: Exact propagator for reflectionless potentials, J. Phys. A16 (1983), 3005–3011.ADSMathSciNetGoogle Scholar
  125. [ Cwi 1 ]
    M. Cwikel: Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106 (1977), 93–100.MathSciNetCrossRefGoogle Scholar
  126. [ Cy 1 ]
    H.L. Cycon: Resonances defined by modified dilations, Helv. Phys. Acta 58 (1985), 969–981.MathSciNetGoogle Scholar
  127. DL 1 ]
    I. Daubechies, E.H. Lieb: One electron relativistic molecule with Coulomb interaction, Commun. Math. Phys. 90 (1983), 497–510.MATHADSMathSciNetCrossRefGoogle Scholar
  128. DAT 1 ]
    G. Dell'Antonio, L. Tenuta: Quantum graphs as holonomic constraints, J. Math. Phys. 47 (2006), 072102.ADSMathSciNetCrossRefGoogle Scholar
  129. Dem 1 ]
    M. Demuth: Pole approximation and spectral concentration, Math. Nachr. 73 (1976), 65–72.MATHMathSciNetCrossRefGoogle Scholar
  130. [Der 1 ]
    J. Derezyński: A new proof of the propagation theorem for N-body quantum systems, Commun. Math. Phys. 122 (1989), 203-231.ADSCrossRefGoogle Scholar
  131. [Der 2]
    J. Derezyński: Algebraic approach to the N —body long—range scattering, Rep. Math. Phys. 3 (1991), 1–62.CrossRefGoogle Scholar
  132. [DLSS 1]
    C. DeWitt, S.G. Low, L.S. Schulman, A.Y. Shiekh: Wedges I, Found. Phys. 16 (1986), 311–349.ADSMathSciNetCrossRefGoogle Scholar
  133. [DeW 1]
    C. DeWitt—Morette: The semiclassical expansion, Ann. Phys. 97 (1976), 367–399; 101, 682–683.ADSMathSciNetCrossRefGoogle Scholar
  134. [DMN 1]
    C. DeWitt—Morette, A. Maheswari, B. Nelson: Path—integration in nonrelativistic quantum mechanics, Phys. Rep. 50 (1979), 255–372.ADSMathSciNetCrossRefGoogle Scholar
  135. [DE 1]
    J. Dittrich, P. Exner: Tunneling through a singular potential barrier, J. Math.Phys. 26 (1985), 2000–2008.MATHADSMathSciNetCrossRefGoogle Scholar
  136. [DE 2]
    J. Dittrich, P. Exner: A non—relativistic model of two—particle decay I–IV, Czech. J. Phys. B37 (1987), 503–515, 1028–1034; B38 (1988), 591–610; B39 (1989), 121–138.ADSMathSciNetCrossRefGoogle Scholar
  137. [DES 1]
    J. Dittrich, P. Exner, P. Seba: Dirac operators with a spherically symmetric δ—shell interaction, J. Math. Phys. 30 (1989), 2975–2982.MathSciNetCrossRefGoogle Scholar
  138. [DES 2]
    J. Dittrich, P. Exner, P. Seba: Dirac Hamiltonians with Coulombic potential and spherically symmetric shell contact interaction, J. Math. Phys. 33 (1992), 2207–2214.MATHADSMathSciNetCrossRefGoogle Scholar
  139. [DK 1]
    J. Dittrich, J. Kříž: Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J. Phys. A35 (2002), L269–275.ADSGoogle Scholar
  140. [DK 2]
    J. Dittrich, J. Kříž: Bound states in straight quantum waveguides with combined boundary conditions, J. Math. Phys. 43 (2002), 3892–3915.MATHADSMathSciNetCrossRefGoogle Scholar
  141. [Di 1]
    J. Dixmier: Sur la relation i(PQ-QP) = I, Compos. Math. 13 (1956), 263–269.MathSciNetGoogle Scholar
  142. [DF 1]
    J.D. Dollard, C.N. Friedmann: Existence and completeness of the Møller wave operators for radial potentials satisfying\(\int_0^1 {\left. r \right|} v\left( r \right)\left| {dr} \right. + \int_1^\infty {\left| v \right.\left( r \right)} \,\left| {dr} \right.\, < \infty \), J. Math. Phys. 21 (1980), 1336–1339.Google Scholar
  143. [DS 1]
    E. Doron, U. Smilansky: Chaotic spectroscopy, Phys. Rev. Lett. 68 (1992), 1255–1258.ADSCrossRefGoogle Scholar
  144. [Dri 1]
    T. Drisch: Generalization of Gleason's theorem, Int. J. Theor. Phys. 18 (1978), 239–243.MathSciNetCrossRefGoogle Scholar
  145. [DuE 1]
    P. Duclos, P. Exner: Curvature—induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), 73–102.MATHMathSciNetCrossRefGoogle Scholar
  146. [DEK 1]
    P. Duclos, P. Exner, D. Krejčiřík: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13–28.MATHADSCrossRefGoogle Scholar
  147. [DEM 1]
    P. Duclos, P. Exner, B. Meller: Exponential bounds on curvature—induced resonances in a two-dimensional Dirichlet tube, Helv. Phys. Acta 71 (1998), 133–162.MATHMathSciNetGoogle Scholar
  148. [DEM 2]
    P. Duclos, P. Exner, B. Meller: Open quantum dots: resonances from perturbed symmetry and bound states in strong magnetic fields, Rep. Math. Phys. 47 (2001), 253–267.MATHMathSciNetCrossRefADSGoogle Scholar
  149. [DuEŠ 1]
    P. Duclos, P. Exner, P. Š̌tovíček: Curvature—induced resonances in a two—dimensional Dirichlet tube, Ann.Inst. H.Poincaré: Phys. Théor. 62 (1995), 81–101.MATHGoogle Scholar
  150. [DuŠ 1]
    P. Duclos, P. Š̌tovíček: Floquet Hamiltonians with pure spectrum, Commun. Math. Phys. 177 (1996), 327–347.MATHADSCrossRefGoogle Scholar
  151. [DuŠV 1]
    P. Duclos, P. Š̌tovíček, M. Vittot: Perturbations of an eigen-value from a dense point spectrum: a general Floquet Hamiltonian, Ann. Inst. H. Poincaré 71 (1999), 241–301.MATHGoogle Scholar
  152. [Du 1]
    I.H. Duru: Quantum treatment of a class of time—dependent potentials, J. Phys. A22 (1989), 4827–4833.ADSMathSciNetGoogle Scholar
  153. [EZ 1]
    J.—P. Eckmann, Ph.C. Zabey: Impossibility of quantum mechanics in a Hilbert space over a finite field, Helv. Phys. Acta 42 (1969), 420–424.MathSciNetGoogle Scholar
  154. [EH 1]
    M. Eilers, M. Horst: The theorem of Gleason for nonseparable Hilbert spaces, Int. J. Theor. Phys. 13 (1975), 419–424.MathSciNetCrossRefGoogle Scholar
  155. [EkK 1]
    T. Ekholm, H. Kovařík: Stability of the magnetic Schrödinger operator in a waveguide, Comm. PDE 30 (2005), 539–565.MATHGoogle Scholar
  156. [ETr 1]
    K.D. Elworthy, A. Truman: A Cameron—Martin formula for Feynman integrals (the origin of Maslov indices), in Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, vol. 153, Springer, Berlin 1982; pp. 288–294.Google Scholar
  157. [Em 1]
    G.G. Emch: Mécanique quantique quaternionique et relativité restreinte I, II, Helv. Phys. Acta 36 (1963), 739–769, 770–788.MathSciNetGoogle Scholar
  158. [ES 1]
    G.G. Emch, K.B. Sinha: Weak quantization in a non—perturbative model, J. Math. Phys. 20 (1979), 1336–1340.ADSMathSciNetCrossRefGoogle Scholar
  159. [En 1,2]
    V. Enss: Asymptotic completeness for quantum—mechanical potential scattering, I. Short—range potentials, II. Singular and long—range potentials, Commun. Math. Phys. 61 (1978), 285–291; Ann. Phys. 119 (1979), 117–132.MATHADSMathSciNetCrossRefGoogle Scholar
  160. [En 3]
    V. Enss: Topics in scattering theory for multiparticle systems: a progress report, Physica A124 (1984), 269–292.ADSMathSciNetGoogle Scholar
  161. [EV 1]
    V. Enss, K. Veselič: Bound states and propagating states for time dependent Hamiltonians, Ann. Inst. H. Poincaré: Phys. Théor. 39 (1983), 159–191.MATHGoogle Scholar
  162. [Epi 1]
    G. Epifanio: On the matrix representation of unbounded operators, J. Math. Phys. 17 (1976), 1688–1691.MATHADSMathSciNetCrossRefGoogle Scholar
  163. [ET 1]
    G. Epifanio, C. Trapani: Remarks on a theorem by G. Epifanio, J. Math. Phys. 20 (1979), 1673–1675.MATHADSMathSciNetCrossRefGoogle Scholar
  164. [ET 2]
    G. Epifanio, C. Trapani: Some spectral properties in algebras of unbounded operators, J. Math. Phys. 22 (1981), 974–978.MATHADSMathSciNetCrossRefGoogle Scholar
  165. [ET 3]
    G. Epifanio, C. Trapani: V *—algebras: a particular class of unbounded operator algebras, J. Math. Phys. 25 (1985), 2633–2637.ADSMathSciNetCrossRefGoogle Scholar
  166. [ELS 1]
    W.D. Evans, R.T. Lewis, Y. Saito: Some geometric spectral properties of N—body Schrödinger operators, Arch. Rat. Mech. Anal. 113 (1991), 377–400.MATHMathSciNetCrossRefGoogle Scholar
  167. [Ex 1]
    P. Exner: Bounded—energy approximation to an unstable quantum system, Rep. Math. Phys. 17 (1980), 275–285.MATHMathSciNetCrossRefADSGoogle Scholar
  168. [Ex 2]
    P. Exner: Generalized Bargmann inequalities, Rep. Math. Phys. 19 (1984), 249–255.MATHMathSciNetCrossRefADSGoogle Scholar
  169. [Ex 3 ]
    P. Exner: Representations of the Poincare group associated with unstable articles, Phys. Rev. D28 (1983), 3621–2627.ADSMathSciNetGoogle Scholar
  170. [Ex 4 ]
    P. Exner: Remark on the energy spectrum of a decaying system, Commun. Math. Phys. 50 (1976), 1–10.ADSMathSciNetCrossRefGoogle Scholar
  171. [Ex 5]
    P. Exner: One more theorem on the short—time regeneration rate, J. Math. Phys. 30 (1989), 2563–2564.MATHADSMathSciNetCrossRefGoogle Scholar
  172. [Ex 6 ]
    P. Exner: A solvable model of two—channel scattering, Helv. Phys. Acta 64 (1991), 592–609.MathSciNetGoogle Scholar
  173. [Ex 7 ]
    P. Exner: A model of resonance scattering on curved quantum wires, Ann. Physik 47 (1990), 123–138.ADSMathSciNetCrossRefGoogle Scholar
  174. [Ex 8 ]
    P. Exner: The absence of the absolutely continuous spectrum for δ' Wannier—Stark ladders, J. Math. Phys. 36 (1995), 4561–4570.MATHADSMathSciNetCrossRefGoogle Scholar
  175. [Ex 9]
    P. Exner: Lattice Kronig—Penney models, Phys. Rev. Lett. 74 (1995), 3503–3506.ADSCrossRefGoogle Scholar
  176. [Ex 10]
    P. Exner: Contact interactions on graph superlattices, J. Phys. A29 (1996), 87–102.ADSMathSciNetGoogle Scholar
  177. [Ex 11 ]
    P. Exner: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313–320.Ex 12 ] P. Exner: A duality between Schrodinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincare: Phys. Theor. 66 (1997), 359–371.MATHADSMathSciNetCrossRefGoogle Scholar
  178. [Ex 12 ]
    P. Exner: A duality between Schrodinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincare: Phys. Theor. 66 (1997), 359–371.MATHMathSciNetGoogle Scholar
  179. [Ex 13 ]
    P. Exner: Magnetoresonances on a lasso graph, Found. Phys. 27 (1997), 171–190.ExADSMathSciNetCrossRefGoogle Scholar
  180. [Ex 14]
    P. Exner: Point interactions in a tube, in “Stochastic Processes: Physics andGeometry: New Interplayes II” (A volume in honor of S. Albeverio; F. Gesztesy et al., eds.); CMS Conference Proceedings, vol. 29, Providence, R.I. 2000; pp. 165– 174Google Scholar
  181. [Ex 15]
    P. Exner: Leaky quantum graphs: a review, in the proceedings volume [EKKST]; arXiv: 0710.5903 [math-ph]Google Scholar
  182. [Ex 16 ]
    P. Exner: An isoperimetric problem for leaky loops and related mean-chord nequalities, J. Math. Phys. 46 (2005), 062105Google Scholar
  183. [Ex 17 ]
    P. Exner: Necklaces with interacting beads: isoperimetric problems, AMS “Contemporary Math” Series, vol. 412, Providence, RI, 2003; pp. 141–149.MathSciNetGoogle Scholar
  184. [EFr 1 ]
    P. Exner, M. Fraas: The decay law can have an irregular character, J. Phys. A40 (2007), 1333–1340.ADSMathSciNetGoogle Scholar
  185. [EFK 1 ]
    P. Exner, P. Freitas, D. Krejčiřík: A lower bound to the spectral threshold in curved tubes, Proc. Roy. Soc. A460 (2004), 3457–3467.ADSMathSciNetGoogle Scholar
  186. [EG 1 ]
    P. Exner, R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275–7286.ADSGoogle Scholar
  187. [EGST 1]
    P. Exner, R. Gawlista, P. Seba, M. Tater: Point interactions in a strip, Ann. Phys. 252 (1996), 133–179.MATHADSMathSciNetCrossRefGoogle Scholar
  188. [EHL 1 ]
    P. Exner, E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrodinger operators depending on curvature, Proceedings of the Conference “Mathematical Results in Quantum Mechanics”(QMath7, Prague 1998); Operator Theory: Advances and Applications, Birkhauser, Basel; pp. 47–53.Google Scholar
  189. [EHL 2]
    P. Exner, E.M. Harrell, M. Loss: Inequalities for means of chords, with appli cation to isoperimetric problems, Lett. Math. Phys. 75 (2006), 225–233; addendum 77 (2006), 219.Google Scholar
  190. [EI 1 ]
    P. Exner, T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439–1450.ADSMathSciNetGoogle Scholar
  191. [EK 1 ]
    P. Exner, G.I. Kolerov: Uniform product formulae, with application to the Feynman—Nelson integral for open systems, Lett. Math. Phys. 6 (1982), 151–159.ADSGoogle Scholar
  192. [EKr 1 ]
    P. Exner, D. Krejčiřík: Quantum waveguide with a lateral semitransparent barrier: spectral and scattering properties, J. Phys. A32 (1999), 4475–4494.ADSMathSciNetGoogle Scholar
  193. [EKr 2 ]
    P. Exner, D. Krejčiřík: Bound states in mildly curved layers, J. Phys. A34 (2001), 5969–5985.ADSMathSciNetGoogle Scholar
  194. [ELW 1 ]
    P. Exner, H. Linde, T. Weidl: Lieb–Thirring inequalities for geometrically induced bound states, Lett. Math. Phys. 70 (2004), 83–95.MATHADSMathSciNetCrossRefGoogle Scholar
  195. [ENZ 1 ]
    P. Exner, H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ': an inverse Klauder phenomenon with norm-resolvent convergence, Commun. Math. Phys. 224 (2001), 593–612.ADSMathSciNetCrossRefGoogle Scholar
  196. [EN 1 ]
    P. Exner, K. Nemcova: Quantum mechanics of layers with a finite number of point perturbations, J. Math. Phys. 43 (2002), 1152–1184.MATHADSMathSciNetCrossRefGoogle Scholar
  197. [EN 2]
    P. Exner, K. Nemcova: Magnetic layers with periodic point perturbations, Rep. Math. Phys. 52 (2003), 255–280.MATHMathSciNetCrossRefADSGoogle Scholar
  198. [EPo 1 ]
    P. Exner, O. Post: Convergence of spectra of graph—like thin manifolds, J. Geom. Phys. 54 (2005), 77–115.MATHADSMathSciNetCrossRefGoogle Scholar
  199. [EPo 2]
    P. Exner, O. Post: Convergence of resonances on thin branched quantum wave guides, J. Math. Phys. 48 (2007), 092104ADSMathSciNetCrossRefGoogle Scholar
  200. [EŠ 1 ]
    P. Exner, P. Šeba: Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), 2574–2580.MATHADSMathSciNetCrossRefGoogle Scholar
  201. [EŠ 2 ]
    P. Exner, P. Šeba: Electrons in semiconductor microstructures: a challenge to operator theorists, in the proceedings volume [[ EŠ 2 ]], pp. 79–100.Google Scholar
  202. [EŠ 3]
    P. Exner, P. Šeba: Quantum motion in two planes connected at one point, Lett. Math. Phys. 12 (1986), 193–198.MATHADSMathSciNetCrossRefGoogle Scholar
  203. [EŠ 4]
    P. Exner, P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386–391, 2254.ADSGoogle Scholar
  204. [EŠ 5]
    P. Exner, P. Šeba: Schrödinger operators on unusual manifolds, in the proceed ings volume [[AFHL]], pp. 227–253.Google Scholar
  205. [EŠ 6 ]
    P. Exner, P. Seba: Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7–26.MATHMathSciNetCrossRefADSGoogle Scholar
  206. [EŠ 7]
    P. Exner, P. Šeba: Trapping modes in a curved electromagnetic waveguide with perfectly conducting walls, Phys. Lett. A144 (1990), 347–350.ADSMathSciNetGoogle Scholar
  207. [EŠ 8]
    EŠ 8] P. Exner, P. Šeba: A “hybrid plane” with spin-orbit interaction, Russ. J. Math. Phys. 14 (2007), 401–405.CrossRefGoogle Scholar
  208. [EŠ 9 ]
    P. Exner, P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, Phys. Lett. A228 (1997), 146–150.ADSGoogle Scholar
  209. [EŠŠ 1 ]
    P. Exner, P. Šeba, P. Š̌tovířek: On existence of a bound state in an L-shaped waveguide, Czech. J. Phys. B39 (1989), 1181–1191.ADSCrossRefGoogle Scholar
  210. [EŠŠ 2]
    P. Exner, P. Seba, P. Š̌tovířek: Semiconductor edges can bind electrons, Phys. Lett. A150 (1990), 179–182.ADSGoogle Scholar
  211. [EŠŠ 3]
    P. Exner, P. Seba, P. Š̌tovířek: Quantum interference on graphs controlled by an external electric field, J. Phys. A21 (1988), 4009–4019.ADSGoogle Scholar
  212. [EŠTV 1 ]
    P. Exner, P. Šeba, M. Tater, D. Vaněk: Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys. 37 (1996), 4867–4887.MATHADSMathSciNetCrossRefGoogle Scholar
  213. [EŠe 1 ]
    P. Exner, E. Šerešová: Appendix resonances on a simple graph, J. Phys. A27 (1994), 8269–8278.ADSGoogle Scholar
  214. [ETV 1 ]
    P. Exner, M. Tater, D. Vaněk: A single-mode quantum transport in serial—structure geometric scatterers, J. Math. Phys. 42(2001), 4050–4078.MATHADSMathSciNetCrossRefGoogle Scholar
  215. [ETu 1 ]
    P. Exner, O. Turek: Approximations of singular vertex couplings in quantum graphs, Rev. Math. Phys. 19 (2007), 571–606.MATHMathSciNetCrossRefGoogle Scholar
  216. [EV 1 ]
    P. Exner, S.A. Vugalter: Bounds states in a locally deformed waveguide: the critical case, Lett. Math. Phys. 39 (1997), 59–68.MATHMathSciNetCrossRefGoogle Scholar
  217. [EV 2 ]
    P. Exner, S.A. Vugalter: Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window, Ann. Inst. H. Poincarě: Phys. Theor. 65 (1996), 109–123.MATHMathSciNetGoogle Scholar
  218. [EV 3 ]
    P. Exner, S.A. Vugalter: On the number of particles that a curved quantum waveguide can bind, J. Math. Phys. 40 (1999), 4630–4638.MATHADSMathSciNetCrossRefGoogle Scholar
  219. [EY 1 ]
    P. Exner, K. Yoshitomi: Asymptotics of eigenvalues of the Schrodinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344–358.MATHADSMathSciNetCrossRefGoogle Scholar
  220. [EZ 1 ]
    P. Exner, V.A. Zagrebnov: Bose-Einstein condensation in geometrically de formed tubes, J. Phys. A38 (2005), L463–470.ADSMathSciNetGoogle Scholar
  221. [Far 1]
    W.G. Faris: Inequalities and uncertainty principles, J. Math. Phys. 19 (1978), 461–466.ADSMathSciNetCrossRefGoogle Scholar
  222. [Far 2]
    W.G. Faris: Product formulas for perturbation of linear operators, J. Funct. Anal. 1 (1967), 93–107.MATHMathSciNetCrossRefGoogle Scholar
  223. [FMRS 1 ]
    J. Feldmann, J. Magnen, V. Rivasseau, R. Seněor: A renormalizable field theory: the massive Gross—Neveu model in two dimensions, Commun. Math. Phys. 103 (1986), 67–103.ADSCrossRefGoogle Scholar
  224. [Fel 1]
    J.G.M. Fell: The dual spaces of c*—algebras, Trans. Am. Math. Soc. 94 (1960), 365–403.MATHMathSciNetCrossRefGoogle Scholar
  225. [Fey 1 ]
    R.P. Feynman: Space—time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys. 20 (1948), 367–387.ADSMathSciNetCrossRefGoogle Scholar
  226. [FJSS 1 ]
    D. Finkelstein, J.M. Jauch, S. Schminovich, D. Speiser: Foundations of quaternionic quantum mechanics, J. Math. Phys. 3 (1962), 207–220.ADSCrossRefGoogle Scholar
  227. [FJSS 2]
    D. Finkelstein, J.M. Jauch, S. Schminovich, D. Speiser: Principle of general Q covariance, J. Math. Phys. 4 (1963), 788–796.MATHADSCrossRefGoogle Scholar
  228. [Fo 1 ]
    V.A. Fock: Konfigurationsraum und zweite Quantelung, Z. Phys. 75 (1932), 622–647.MATHADSCrossRefGoogle Scholar
  229. [Fri 1 ]
    K.O. Friedrichs: On the perturbation of continuous spectra, Commun. Appl. Math. 1 (1948), 361–406.MathSciNetGoogle Scholar
  230. [FLL 1]
    J. Frohlich, E.H. Lieb, M. Loss: Stability of Coulomb systems with magnetic fields, I. The one—electron atom, Commun. Math. Phys. 104 (1986), 251–270.ADSMathSciNetCrossRefGoogle Scholar
  231. [FT 1 ]
    T. Fulop, I. Tsutsui: A free particle on a circle with point interaction, Phys. Lett. A264 (2000), 366–374.ADSMathSciNetGoogle Scholar
  232. [Gam 1]
    G. Gamow: Zur Quantetheorie des Atomkernes, Z. Phys. 51 (1928), 204–212.ADSCrossRefGoogle Scholar
  233. [GK 1 ]
    K. Gawedzki, A. Kupiainen: Gross—Neveu model through convergent expan sions, Commun. Math. Phys. 102 (1985), 1–30.ADSMathSciNetCrossRefGoogle Scholar
  234. [GN 1 ]
    I.M. Gel'fand, M.A. Naimark: On embedding of a normed ring to the ring of operators in Hilbert space, Mat. Sbornik 12 (1943), 197–213 (in Russian). Google Scholar
  235. [GMR 1]
    C. Gerard, A. Martinez, D. Robert: Breit—Wigner formulas for the scattering phase and the total cross section in the semiclassical limit, Commun. Math. Phys. 121 (1989), 323–336.MATHADSMathSciNetCrossRefGoogle Scholar
  236. [ GP 1 ]
    N.I. Gerasimenko, B.S. Pavlov: Scattering problem on non—compact graphs, Teor. mat. fiz. 74 (1988), 345–359 (in Russian). MathSciNetGoogle Scholar
  237. [GGT 1]
    F. Gesztesy, H. Grosse, B. Thaller: Efficient method for calculating relativistic corrections to spin 1/2 particles, Phys. Rev. Lett. 50 (1983), 625–628.ADSCrossRefGoogle Scholar
  238. [ GGT 2 ]
    F. Gesztesy, H. Grosse, B. Thaller: First order relativistic corrections and the spectral concentration, Adv. Appl. Math. 6 (1985), 159–176.MATHMathSciNetCrossRefGoogle Scholar
  239. [ GGH 1 ]
    F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sadun, B. Simon, P. Vogel: Trapping and cascading in the large coupling limit, Commun. Math. Phys. 118 (1988), 597–634.MATHADSCrossRefGoogle Scholar
  240. [ GŠ 1 ]
    F. Gesztesy, P. Šeba: New analytically solvable models of relativistic point interactions, Lett. Math. Phys. 13 (1987), 213–225.CrossRefGoogle Scholar
  241. [ GST 1]
    F. Gesztesy, B. Simon, B. Thaller: On the self—adjointness of Dirac operator with anomalous magnetic moment, Proc. Am. Math. Soc. 94 (1985), 115–118.MATHMathSciNetCrossRefGoogle Scholar
  242. [ GGM 1 ]
    V. Glaser, H. Grosse, A. Martin: Bounds on the number of eigenvalues of the Schrödinger operator, Commun. Math. Phys. 59 (1978), 197–212.MATHADSMathSciNetCrossRefGoogle Scholar
  243. [ GMGT 1]
    V. Glaser, A. Martin, H. Grosse, W. Thirring: A family of optimal condi tions for the absence of bound states in a potential, in [[ LSW ]], pp. 169–194.Google Scholar
  244. [ Gla 1 ]
    R.J. Glauber: Photon correlations, Phys. Rev. Lett. 10 (1963), 84–86.ADSMathSciNetCrossRefGoogle Scholar
  245. [ Gla 2 ]
    R.J. Glauber: Coherent and incoherent states of the radiation fields, Phys. Rev. 131 (1963), 2766–2788.ADSMathSciNetCrossRefGoogle Scholar
  246. [ Gle 1 ]
    A.M. Gleason: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 91–110.MathSciNetGoogle Scholar
  247. [ GJ 1 ]
    J. Glimm, A. Jaffe: Boson quantum field models, in [[ Str ]], pp. 77–143.Google Scholar
  248. [ GoJ 1 ]
    J. Goldstone, R.L. Jaffe: Bound states in twisting tubes, Phys. Rev. B45 (1992), 14100–14107.ADSGoogle Scholar
  249. [ GWW 1 ]
    C. Gordon, D.L. Webb, S. Wolpert: One cannot hear the shape of a drum, Bull. Am. Math. Soc. 27 (1992), 134–138.MATHMathSciNetCrossRefGoogle Scholar
  250. [ Gra 1 ]
    G.M. Graf: Asymptotic completeness for N—body short range quantum sys tems: a new proof, Commun. Math. Phys. 132 (1990), 73–101.MATHADSMathSciNetCrossRefGoogle Scholar
  251. [GG 1]
    S. Graffi, V. Grecchi: Resonances in Stark effect of atomic systems, Commun. Math. Phys. 79 (1981), 91–110.MATHADSMathSciNetCrossRefGoogle Scholar
  252. [GLL 1]
    M. Griesemer, E.H. Lieb, M. Loss: Ground states in non-relativistic quantum electrodynamics, Invent. Math. 145 (2001), 557–595.MATHADSMathSciNetCrossRefGoogle Scholar
  253. [Gri 1]
    D. Grieser: Spectra of graph neighborhoods and scattering, arXiv:0710.3405v1 [math.SP]Google Scholar
  254. [ GMa 1 ]
    D. Gromoll, W. Meyer, On complete open manifolds of positive curvature, Ann. Math. 90 (1969), 75–90.MathSciNetCrossRefGoogle Scholar
  255. [Gro 1]
    C. Grosche: Coulomb potentials by path integration, Fortschr. Phys. 40 (1992), 695–737.MathSciNetCrossRefGoogle Scholar
  256. [ Gr 1 ]
    H. Grosse: On the level order for Dirac operators, Phys. Lett. B197 (1987), 413–417.ADSMathSciNetGoogle Scholar
  257. [ Gud 1 ]
    S.P. Gudder: The Hilbert space axiom in quantum mechanics, in Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology. Essays in Honor of W. Yourgrau, Plenum Press, New York 1983; pp. 109–127.Google Scholar
  258. [ Haa 1 ]
    R. Haag: Quantum field theory, in the proceedings volume [[ Str ]], pp. 1–16.Google Scholar
  259. [ Haa 2 ]
    R. Haag: On quantum field theories, Danske Vid. Selsk. Mat.—Fys. Medd. 29 (1955), No. 12.Google Scholar
  260. [ Haa 3 ]
    R. Haag: Local relativistic quantum physics, Physica A124(1984), 357–364.ADSMathSciNetGoogle Scholar
  261. [HK 1]
    R. Haag, D. Kastler: An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.MATHADSMathSciNetCrossRefGoogle Scholar
  262. [Ha 1]
    M. Hack: On the convergence to the Møller wave operators, Nuovo Cimento 9 (1958), 731–733.MATHCrossRefGoogle Scholar
  263. [ Hag 1]
    G. Hagedorn: Semiclassical quantum mechanics I—IV, Commun. Math. Phys. 71 (1980), 77–93; Ann. Phys. 135 (1981), 58–70; Ann. Inst. H. Poincaré A42 (1985), 363–374.Google Scholar
  264. [ Hag 2 ]
    G. Hagedorn: Adiabatic expansions near adiabatic crossings, Ann. Phys. 196 (1989), 278–295.MATHADSMathSciNetCrossRefGoogle Scholar
  265. [HJ 1]
    G. Hagedorn, A. Joye: Molecular propagation through small avoided crossings of electron energy levels, Rev. Math. Phys. 11 (1999), 41–101.MATHMathSciNetCrossRefGoogle Scholar
  266. [HJ 2]
    G. Hagedorn, A. Joye: Time development of exponentially small non-adiabatic transitions, Commun. Math. Phys. 250 (2004), 393–413.MATHADSMathSciNetCrossRefGoogle Scholar
  267. [ HLS 1 ]
    G. Hagedorn, M. Loss, J. Slawny: Non—stochasticity of time—dependent quadratic Hamiltonians and the spectra of transformation, J. Phys. A19 (1986), 521–531.ADSMathSciNetGoogle Scholar
  268. [ HS 1 ]
    Ch. Hainzl, R. Seiringer: Mass renormalization and energy level shift in non-relativistic QED, Adv. Theor. Math. Phys. 6 (2002), 847–871.MathSciNetGoogle Scholar
  269. [ Har 1]
    G.H. Hardy: A note on a Theorem by Hilbert, Math. Z. 6 (1920), 314–317.MathSciNetCrossRefGoogle Scholar
  270. [ Harm 1 ]
    M. Harmer: Hermitian symplectic geometry and extension theory, J. Phys. A33 (2000), 9193–9203.ADSMathSciNetGoogle Scholar
  271. [ Harp 1]
    P.G. Harper: Single band motion of conduction electrons in a uniform mag netic field, Proc. Roy. Soc. London A68 (1955), 874–878.Google Scholar
  272. [ HE 1 ]
    M. Havlíček, P. Exner: Note on the description of an unstable system, Czech. J. Phys. B19 (1973), 594–600.Google Scholar
  273. [ HSS 1]
    R. Hempel, L.A. Seco, B. Simon: The essential spectrum of Neumann Lapla- cians on some bounded singular domains, J. Funct. Anal. 102 (1991), 448–483.MATHMathSciNetCrossRefGoogle Scholar
  274. [Hep 1]
    K. Hepp: The classical limit for quantum correlation function, Commun. Math. Phys. 35 (1974), 265–277.ADSMathSciNetCrossRefGoogle Scholar
  275. [ Her 1 ]
    I.W. Herbst: Dilation analycity in constant electric field, I. The two—body problem, Commun. Math. Phys. 64 (1979), 279–298.MATHADSMathSciNetGoogle Scholar
  276. [HH 1]
    I.W. Herbst, J.S. Howland: The Stark ladder resonances and other one—dimen sional external field problems, Commun. Math. Phys. 80 (1981), 23–42.MATHADSMathSciNetCrossRefGoogle Scholar
  277. [Herb 1]
    F. Herbut: Characterization of compatibility, comparability and orthogonality of quantum propositions in terms of chains of filters, J. Phys. A18 (1985), 2901–2907.ADSMathSciNetGoogle Scholar
  278. [HU 1]
    J. Hilgevoord, J.B.M. Uffink: Overall width, mean peak width and uncertainty principle, Phys. Lett. 95A (1983), 474–476.ADSGoogle Scholar
  279. [ Hil 1 ]
    R.N. Hill: Proof that the H- ion has only one bound state, Phys. Rev. Lett. 38 (1977), 643–646.ADSCrossRefGoogle Scholar
  280. [HSp 1]
    F. Hiroshima, H. Spohn: Enhanced binding through coupling to a quantum field, Ann. Henri Poincaré 2 (2001), 1159–1187.MATHMathSciNetCrossRefGoogle Scholar
  281. [Hof 1]
    G. Hofmann: On the existence of quantum fields in space—time dimension 4, Rep. Math. Phys. 18 (1980), 231–242.MATHMathSciNetCrossRefADSGoogle Scholar
  282. [Hof 1]
    R. Hofstadter: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14 (1976), 2239–2249.ADSGoogle Scholar
  283. [Hö 1]
    G. Höhler: Über die Exponentialnäherung beim Teilchenzerfall, Z. Phys. 152 (1958), 546–565.MATHADSCrossRefGoogle Scholar
  284. [HV 1]
    S.S. Horužii, A.V. Voronin: Field algebras do not leave field domains invariant, Commun. Math. Phys. 102 (1986), 687–692.ADSCrossRefGoogle Scholar
  285. [HB 1]
    L.P. Horwitz, L.C. Biedenharn: Quaternion quantum mechanics: second quan tization and gauge fields, Ann. Phys. 157 (1984), 432–488.MATHADSMathSciNetCrossRefGoogle Scholar
  286. [HLM 1]
    L.P. Horwitz, J.A. LaVita, J.-P. Marchand: The inverse decay problem, J. Math. Phys. 12 (1971), 2537–2543.MATHADSMathSciNetCrossRefGoogle Scholar
  287. [HL 1]
    L.P. Horwitz, J. Levitan: A soluble model for time dependent perturbation of an unstable quantum system, Phys. Lett. A153 (1991), 413–419.ADSMathSciNetGoogle Scholar
  288. [HM 1]
    L.P. Horwitz. J.-P. Marchand: The decay-scattering system, Rocky Mts. J. Math. 1 (1971), 225–253.MathSciNetGoogle Scholar
  289. [vH 1]
    L. van Hove: Sur le probleme des relations entre les transformations unitaires de la Mécanique quantique et les transformations canoniques de la Mécanique classique, Bull. Acad. Roy. de Belgique, Classe des Sciences 37 (1951), 610–620.Google Scholar
  290. [How 1]
    J.S. Howland: Perturbations of embedded eigenvalues by operators of finite rank, J. Math. Anal. Appl. 23 (1968), 575–584.MATHMathSciNetCrossRefGoogle Scholar
  291. [How 2]
    J.S. Howland: Spectral concentration and virtual poles I, II, Am. J. Math. 91 (1969), 1106–1126; Trans. Am. Math. Soc. 162 (1971), 141–156.MATHMathSciNetCrossRefGoogle Scholar
  292. [How 3]
    J.S. Howland: Puiseaux series for resonances at an embedded eigenvalue, Pacific J. Math. 55 (1974), 157–176.MATHMathSciNetGoogle Scholar
  293. [How 4]
    J.S. Howland: The Livsic matrix in perturbation theory, J. Math. Anal. Appl. 50 (1975), 415–437.MATHMathSciNetCrossRefGoogle Scholar
  294. [How 5]
    J.S. Howland: Stationary theory for time—dependent Hamiltonians, Math. Ann. 207 (1974), 315–333.MATHMathSciNetCrossRefGoogle Scholar
  295. [How 6]
    J.S. Howland: Floquet operator with singular spectrum I, II, Ann. Inst. H. Poincarée: Phys.Théor. 49 (1989), 309–323, 325–335.MathSciNetGoogle Scholar
  296. [How 7]
    J.S. Howland: Stability of quantum oscillators, J. Phys. A25 (1992), 5177–81.ADSMathSciNetGoogle Scholar
  297. [HLT 1]
    D. Hundertmark, E.H. Lieb, L.E. Thomas: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2(1998), 719–731.MATHMathSciNetGoogle Scholar
  298. [HLW 1]
    D. Hundertmark, A. Laptev, T. Weidl: New bounds on the Lieb-Thirring constants, Invent. Math. 140 (2000), 693–704.MATHADSMathSciNetCrossRefGoogle Scholar
  299. [Hun 1]
    W. Hunziker: Resonances, metastable states and exponential decay laws in perturbation theory, Commun. Math. Phys. 132 (1990), 177–188.MATHADSMathSciNetCrossRefGoogle Scholar
  300. [Ich 1]
    T. Ichinose: Path integral for a hyperbolic system of the first order, Duke Math. J. 51 (1984), 1–36.MATHMathSciNetCrossRefGoogle Scholar
  301. [IK 1]
    T. Ikebe, T. Kato: Uniqueness of the self—adjoint extension of singular elliptic differential operators, Arch. Rat. Mech. Anal. 9 (1962), 77–92.MATHMathSciNetCrossRefGoogle Scholar
  302. [Ito 1]
    K. Ito: Wiener integral and Feynman integral, in Proceedings of the 4th Berke ley Symposium on Mathematical Statistics and Probability, vol. 2, University of California Press, Berkeley, CA 1961; pp. 227–238.Google Scholar
  303. [Ito 2]
    K. Ito: Generalized uniform complex measures in the Hilbertian metric space with their applications to the Feynman integral, in Proceedings of the 5th Berke ley Symposium on Mathematical Statistics and Probability, vol.2/1, University of California Press, Berkeley, CA 1967; pp. 145–167.Google Scholar
  304. [IS 1]
    P.A. Ivert, T. Sjödin: On the impossibility of a finite proposition lattice for quantum mechanics, Helv. Phys. Acta 51 (1978), 635–636.MathSciNetGoogle Scholar
  305. [Ja 1,2]
    J.M. Jauch: Theory of the scattering operator I, II, Helv. Phys.Acta 31 (1958), 127–158, 661–684.MATHMathSciNetGoogle Scholar
  306. [JP 1]
    J.M. Jauch, C. Piron: Can hidden variables be excluded in quantum mechanics?, Helv. Phys. Acta 36 (1963), 827–837.MATHMathSciNetGoogle Scholar
  307. [JL 1]
    H. Jauslin, J.L. Lebowitz: Spectral and stability aspects of quantum chaos, Chaos 1 (1991), 114–121.MATHADSMathSciNetCrossRefGoogle Scholar
  308. [Jo 1]
    G.W. Johnson: The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), 2090–2096.MATHADSMathSciNetCrossRefGoogle Scholar
  309. [Jo 2]
    G.W. Johnson: Feynman's paper revisited, Suppl. Rend. Circ. Mat. Palermo, Ser.II, 17 (1987), 249–270.Google Scholar
  310. [JS 1]
    G.W. Johnson, D.L. Skoug: A Banach algebra of Feynman integrable functions with applications to an integral equation which is formally equivalent to Schrödinger equation, J. Funct. Anal. 12 (1973), 129–152.MATHMathSciNetCrossRefGoogle Scholar
  311. [JNW 1]
    P. Jordan, J. von Neumann, E. Wigner: On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1934), 29–64.CrossRefGoogle Scholar
  312. [JoP 1]
    R. Jost, A. Pais: On the scattering of a particle by a static potential, Phys. Rev. 82 (1951), 840–850.MATHADSMathSciNetCrossRefGoogle Scholar
  313. [Joy 1]
    A. Joye: Proof of the Landau—Zener formula, Asympt. Anal. 9 (1994), 209–258.MATHMathSciNetGoogle Scholar
  314. [JoyP 1]
    A. Joye, Ch.-Ed. Pfister: Exponentially small adiabatic invariant for the Schrödinger equation, Commun. Math. Phys. 140 (1991), 15–41.MATHADSMathSciNetCrossRefGoogle Scholar
  315. [JoyP 2]
    A. Joye, Ch.—Ed. Pfister: Superadiabatic evolution and adiabatic transition probability between two non—degenerate levels isolated in the spectrum, J. Math. Phys. 34 (1993), 454–479.MATHADSMathSciNetCrossRefGoogle Scholar
  316. [Kac 1]
    M. Kac: On distributions of certain Wiener functionals, Trans. Am. Math. Soc. 65 (1949), 1–13.MATHCrossRefGoogle Scholar
  317. [Kad 1]
    R.V. Kadison: Normal states and unitary equivalence of von Neumann alge bras, in the proceedings volume [[Kas]], pp. 1–18.Google Scholar
  318. [Kar 1]
    B. Karnarski: Generalized Dirac operators with several singularities, J. Oper ator Theory 13 (1985), 171–188.MATHMathSciNetGoogle Scholar
  319. [Kas 1]
    D. Kastler: The C*—algebra of a free boson field, I. Discussion of basic facts, Commun. Math. Phys. 1 (1965), 14–48.MATHADSMathSciNetCrossRefGoogle Scholar
  320. [Ka 1]
    T. Kato: Integration of the equations of evolution in a Banach space, J. Math. Soc. Jpn 5 (1953), 208–234.MATHGoogle Scholar
  321. [Ka 2]
    T. Kato: Wave operators and similarity for some non—selfadjoint operators, Math. Ann. 162 (1966), 258–279.MATHMathSciNetCrossRefGoogle Scholar
  322. [Ka 3]
    T. Kato: Fundamental properties of Hamiltonian of the Schrödinger type, Trans. Am. Math. Soc. 70 (1951), 195–211.MATHCrossRefGoogle Scholar
  323. [Ka 4]
    T. Kato: On the existence of solutions of the helium wave equations, Trans. Am. Math. Soc. 70 (1951), 212–218.MATHCrossRefGoogle Scholar
  324. [Ka 5]
    T. Kato: Growth properties of solutions of the reduced wave equation with variable coefficients, Commun. Pure Appl. Math. 12 (1959), 403–425.MATHCrossRefGoogle Scholar
  325. [Ka 6]
    T. Kato: Perturbations of continuous spectra by trace class operators, Proc.Jpn. Acad. 33 (1057), 260–264.Google Scholar
  326. [Ka 7]
    T. Kato: Positive commutators i[f(P), g(Q)] , J. Funct. Anal. 96 (1991), 117–129.MATHMathSciNetCrossRefGoogle Scholar
  327. [KY 1]
    T. Kato, K. Yajima: Dirac equations with moving nuclei,Ann. Inst. H. Poincaré : Phys. Théor. 54 (1991), 209–221.MATHMathSciNetGoogle Scholar
  328. [KL 1]
    J.C. Khandekar, S.V. Lawande: Feynman path integrals: some exact results and applications, Phys. Rep. 137 (1986), 115–229.ADSMathSciNetCrossRefGoogle Scholar
  329. [Kis 1]
    A. Kiselev: Some examples in one—dimensional “geometric” scattering on manifolds, J. Math. Anal. Appl. 212 (1997), 263–280.MATHMathSciNetCrossRefGoogle Scholar
  330. [Kit 1]
    H. Kitada: Asymptotic completeness of N—body operators, I. Short—range systems, Rep. Math. Phys. 3 (1991), 101–124.MATHMathSciNetCrossRefGoogle Scholar
  331. [Kla 1]
    J.R. Klauder: Continuous—representation theory I, II, J. Math. Phys. 4 (1963), 1055–1058, 1058–1073.ADSMathSciNetCrossRefGoogle Scholar
  332. [Kla 2]
    J.R. Klauder: The action option and Feynman quantization of spinor fields in terms of ordinary C-numbers, Ann. Phys. 11 (1960), 123–164.MATHADSMathSciNetCrossRefGoogle Scholar
  333. [KD 1]
    J.R. Klauder, I. Daubechies: Quantum mechanical path integrals with Wiener measure for all polynomial Hamiltonians, Phys. Rev. Lett. 52 (1984), 1161–1164.MATHADSMathSciNetCrossRefGoogle Scholar
  334. [Kl 1]
    M. Klaus: On the bound states of Schrödinger operators in one dimension, Ann. Phys. 108 (1977), 288–300.MATHADSMathSciNetCrossRefGoogle Scholar
  335. [Kl 2]
    M. Klaus: On the point spectrum of Dirac operators, Helv. Phys. Acta 53 (1980), 453–462.MathSciNetGoogle Scholar
  336. [Kl 3]
    M. Klaus: Dirac operators with several Coulomb singularities, Helv. Phys. Acta 53 (1980), 463–482.MathSciNetGoogle Scholar
  337. [KlS 1]
    M. Klein, E. Schwarz: An elementary proof to formal WKB expansions in Řn , Rep. Math. Phys. 2 (1990), 441–456.MATHMathSciNetCrossRefGoogle Scholar
  338. [KoS 1]
    V. Kostrykin, R. Schrader: Kirhhoff's rule for quantum wires, J. Phys. A32 (1999), 595–630.ADSMathSciNetGoogle Scholar
  339. [KoS 2]
    V. Kostrykin, R. Schrader: Kirhhoff's rule for quantum wires. II: The in verse problem with possible applications to quantum computers, Fortschr. Phys. 48 (2000), 703–716.MATHMathSciNetCrossRefGoogle Scholar
  340. [KoS 3]
    V. Kostrykin, R. Schrader: The generalized star product and the factorization of scattering matrices on graphs, J. Math. Phys. 42 (2001), 1563–1598.MATHADSMathSciNetCrossRefGoogle Scholar
  341. [KoS 4]
    V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161–179.MATHADSMathSciNetGoogle Scholar
  342. [Kuch 1]
    P. Kuchment: Quantum graphs, I. Some basic structures, Waves Rand. Media 14 (2004), S107–128.MATHADSMathSciNetCrossRefGoogle Scholar
  343. [Kuch 2]
    P. Kuchment: Quantum graphs, II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A38 (2005), 4887–4900.ADSMathSciNetGoogle Scholar
  344. [KuZ 1]
    P. Kuchment, H. Zeng: Convergence of spectra of mesoscopic systems collaps ing onto a grap, J. Math. Anal. Appl. 258 (2001), 671–700.MATHMathSciNetCrossRefGoogle Scholar
  345. [KuS 1]
    J. Kupsch, W. Sandhas: MØller operators for scattering on singular potentials, Commun. Math. Phys. 2 (1966), 147–154.MATHADSMathSciNetCrossRefGoogle Scholar
  346. [Kur 1,2]
    S. Kuroda: Perturbations of continuous spectra by unbounded operators I, II, J. Math. Soc. Jpn 11 (1959), 247–262; 12 (1960), 243–257.MATHADSCrossRefGoogle Scholar
  347. [LF 1]
    O.A. LadyŽenskaya, L.D. Faddeev: On perturbations of the continuous spec trum, Doklady Acad. Sci. USSR 120 (1958), 1187–1190 (in Russian).Google Scholar
  348. [Lan 1]
    C. Lance: Tensor products of C*—algebras, in [Kas], pp. 154–166.Google Scholar
  349. [La 1]
    R. Landauer: Electrical resistance of disordered one-dimensional lattices, Phil. Mag. 21 (2000), 863–867.ADSCrossRefGoogle Scholar
  350. [Lap 1]
    M.L. Lapidus: The Feynman—Kac formula with a Lebesgue—Stieltjes measure and Feynman operational calculus, Studies Appl. Math. 76 (1987), 93–132.MATHMathSciNetGoogle Scholar
  351. [LW 1]
    A. Laptev, T. Weidl: Hardy inequalities for magnetic Dirichlet forms, Oper. Theory Adv. Appl. 108 (1999), 299–305.MathSciNetGoogle Scholar
  352. [LW 2]
    A. Laptev, T. Weidl: Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184 (2000), 87–111.MATHMathSciNetCrossRefGoogle Scholar
  353. [Las 1]
    G. Lassner: Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279–293.MATHMathSciNetCrossRefADSGoogle Scholar
  354. [Las 2]
    G. Lassner: Topologien auf Op*—Algebren, Wiss. Z. KMU Leipzig, Math.— Naturwiss. 24 (1975), 465–471.MathSciNetGoogle Scholar
  355. [Las 3]
    G. Lassner: Algebras of unbounded operators and quantum dynamics, Physica A124 (1984), 471–480.ADSMathSciNetGoogle Scholar
  356. [LT 1]
    G. Lassner, W. Timmermann: Normal states on algebras of unbounded operators, Rep. Math. Phys. 3 (1972), 295–305.MATHMathSciNetCrossRefADSGoogle Scholar
  357. [LT 2]
    G. Lassner, W. Timmermann: Classification of domains of operator algebras, Rep. Math. Phys. 9 (1976), 205–217.MATHMathSciNetCrossRefADSGoogle Scholar
  358. [Lee 1]
    T.D. Lee: Some special examples in renormalizable field theory, Phys. Rev. 95 (1954), 1329–1334.MATHADSCrossRefGoogle Scholar
  359. [LLMRSY 1]
    F. Lenz, J.T. Londergan, R.J. Moniz,R.Rosenfelder, M.Stingl, K.Yazaki: Quark confinement and hadronic interactions, Ann. Phys. 170 (1986), 65–254.ADSCrossRefGoogle Scholar
  360. [LeL 1]
    J.—M. Lévy—Leblond: Galilei group and Galilean invariance, in the proceedings volume [[Loe 2]], pp. 221–299.Google Scholar
  361. [LeL 2]
    J.—M. Lévy—Leblond: Galilean quantum field theories and a ghostless Lee model, Commun. Math. Phys. 4 (1967), 157–176.ADSCrossRefGoogle Scholar
  362. [Lie 1]
    E.H. Lieb: The classical limit of quantum spin systems, Commun. Math. Phys. 31 (1973), 327–340.MATHADSMathSciNetCrossRefGoogle Scholar
  363. [Lie 2]
    E.H. Lieb: Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Am. Math. Soc. 82 (1976), 751–753.MATHMathSciNetCrossRefGoogle Scholar
  364. [Lie 3]
    E.H. Lieb: The number of bound states of one—body Schrödinger operators and the Weyl problem, Proc. Symp. Pure Math. 36 (1980), 241–252.MathSciNetGoogle Scholar
  365. [Lie 4]
    E.H. Lieb: A bound on the maximal ionization of atoms and molecules, Phys. Rev. A29 (1984), 3018–3028.ADSGoogle Scholar
  366. [Lie 5]
    E.H. Lieb: The stability of matter, Rev. Mod. Phys. 48 (1976), 553–569.ADSMathSciNetCrossRefGoogle Scholar
  367. [Lie 6]
    E.H. Lieb: The stability of matter: from atoms to stars, Bull. Am. Math. Soc. 22 (1990), 1–49.MATHMathSciNetCrossRefGoogle Scholar
  368. [Lie 7]
    E.H. Lieb: A bound on maximum ionization of atoms and molecules, Phys. Rev. A29 (1984), 3018–3028.ADSGoogle Scholar
  369. [LL 1]
    E.H. Lieb, M. Loos: Stability of Coulomb systems with magnetic fields, II. The many—electron atom and the one—electron molecule, Commun. Math. Phys. 104 (1986), 271–282.MATHADSCrossRefGoogle Scholar
  370. [LiT 1]
    E.H. Lieb, W. Thirring: Inequalities for the momenta of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, in the proceedings volume [[LSW]], pp. 269–304.Google Scholar
  371. [LSST 1]
    E.H. Lieb, I.M. Sigal, B. Simon, W. Thirring: Asymptotic neutrality of large Zions, Phys. Rev. Lett. 52 (1984), 994–996.ADSMathSciNetCrossRefGoogle Scholar
  372. [LY 1]
    E.H. Lieb, H.—T. Yau: The stability and instability of the relativistic matter, Commun. Math. Phys. 118 (1988), 177–213.MATHADSMathSciNetCrossRefGoogle Scholar
  373. [LöT 1]
    F. Löffler, W. Timmermann: The Calkin representation for a certain class of algebras of unbounded operators, Rev. Roum. Math. Pures Appl. 31 (1986), 891– 903.MATHGoogle Scholar
  374. [Lü 1]
    G. Lüko: On the mean lengths of the chords of a closed curve, Israel J. Math. 4 (1966), 23–32.MathSciNetCrossRefGoogle Scholar
  375. [Mar 1]
    Ph. Martin: Time delay in quantum scattering processes, Acta Phys. Austriaca Suppl. XXIII (1981), 157–208.Google Scholar
  376. [Mau 1]
    K. Maurin: Elementare Bemerkungen öber komutative C*—Algebren. Beweis einer Vermutung von Dirac, Stud. Math. 16 (1957), 74–79.MATHMathSciNetGoogle Scholar
  377. [MS 1]
    B. Misra, K.B. Sinha: A remark on the rate of regeneration in decay processes, Helv. Phys. Acta 50 (1977), 99–104.MathSciNetGoogle Scholar
  378. [MŠ 1]
    B. Milek, P. Šeba: Quantum instability in the kicked rotator with rank—one perturbation, Phys. Lett. A151 (1990), 289–294.ADSGoogle Scholar
  379. [Mol 1]
    A.M. Molčanov: On conditions of the spectrum discreteness of self—adjoint second—order differential equations, Trudy Mosk. mat. obš čestva 2 (1953), 169–200 (in Russian).Google Scholar
  380. [MV 1]
    S. Molchanov, B. Vainberg: Scattering solutions in a network of thin fibers: small diameter asymptotics, Commun. Math. Phys. 273 (2007), 533–559.MATHADSMathSciNetCrossRefGoogle Scholar
  381. [Nak 1]
    S. Nakamura: Shape resonances for distortion analytic Schrödinger operators, Commun. PDE 14 (1989), 1385–1419.MATHGoogle Scholar
  382. [Nar 1]
    F. Nardini: Exponential decay for the eigenfunctions of the two—body rela-tivistic Hamiltonian, J. d‘Analyse Math. 47 (1986), 87–109.MATHMathSciNetGoogle Scholar
  383. [Nas 1]
    A.H. Nasr: The commutant of a multiplicative operator, J. Math. Phys. 23 (1982), 2268–2270.MATHADSMathSciNetCrossRefGoogle Scholar
  384. [Ned 1]
    L. Nedelec: Sur les résonances de l'opérateur de Dirichlet dans un tube, Comm. PDE 22 (1997), 143–163.MATHMathSciNetGoogle Scholar
  385. [Nel 1]
    E. Nelson: Analytic vectors, Ann. Math. 70 (1959), 572–614.CrossRefGoogle Scholar
  386. [Nel 2]
    E. Nelson: Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332–343.MATHADSCrossRefGoogle Scholar
  387. [Nel 3]
    E. Nelson: Construction of quantum fields from Markoff fields, J. Funct. Anal. 12(1973), 97–112.MATHCrossRefGoogle Scholar
  388. [Nen 1]
    G. Nenciu: Adiabatic theorem and spectral concentration I, Commun. Math. Phys. 82 (1981), 121–135.MATHADSMathSciNetCrossRefGoogle Scholar
  389. [Nen 2]
    G. Nenciu: Linear adiabatic theory. Exponential estimates, Commun. Math. Phys. 152 (1993), 479–496.MATHADSMathSciNetCrossRefGoogle Scholar
  390. [Nen 3]
    G. Nenciu: Distinguished self—adjoint extension for Dirac operators dominated by multicenter Coulomb potentials, Helv. Phys. Acta 50 (1977), 1–3.MathSciNetGoogle Scholar
  391. [VN 1]
    J. von Neumann: Mathematische Begründung der Quantenmechanik, Nachr. Gessel. Wiss. Göttingen, Math. Phys. (1927), 1–57.Google Scholar
  392. [vN 2]
    J. von Neumann: Allgemeine Eigenwerttheorie Hermitescher Funktionalopera-toren, Math. Ann. 102 (1930), 49–131.MathSciNetCrossRefGoogle Scholar
  393. [vN 3]
    J. von Neumann: On infinite direct products, Compos. Math. 6 (1938), 1–77.MATHGoogle Scholar
  394. [New 1]
    R.G. Newton: Bounds on the number of bound states for the Schrödinger equations in one and two dimensions, J. Operator Theory 10 (1983), 119–125.MATHMathSciNetGoogle Scholar
  395. [NSG 1]
    M.M. Nieto, L.M. Simmons, V.P. Gutschik: Coherent states for general potentials I—VI, Phys. Rev. D20 (1979), 1321–1331, 1332–1341, 1342–1350; D22 (1980), 391–402, 403–418; D23 (1981), 927–933.ADSGoogle Scholar
  396. [Nö 1]
    J.U. Nöckel: Resonances in quantum-dot transport, Phys. Rev. B46 (1992), 15348–15356.ADSGoogle Scholar
  397. [Ost 1]
    K. Osterwalder: Constructive quantum field theory: goals, methods, results, Helv. Phys. Acta 59 (1986), 220–228.MathSciNetGoogle Scholar
  398. [OS 1,2]
    K. Osterwalder, R. Schrader: Axioms for Euclidean Green's functions, Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.MATHADSMathSciNetCrossRefGoogle Scholar
  399. [Pav 1]
    B.S. Pavlov: A model of a zero—range potential with an internal structure, Teor. mat. fiz. 59 (1984), 345–353 (in Russian).Google Scholar
  400. [Pea 1]
    D.B. Pearson: An example in potential scattering illustrating the breakdown of asymptotic completeness, Commun. Math. Phys. 40 (1975), 125–146.ADSMathSciNetCrossRefGoogle Scholar
  401. [Pea 2]
    D.B. Pearson: A generalization of Birman's trace theorem, J. Funct. Anal. 28 (1978), 182–186.MATHMathSciNetCrossRefGoogle Scholar
  402. [Per 1]
    A.M. Perelomov: Coherent states for arbitrary Lie group, Commun. Math. Phys. 26 (1972), 222–236.MATHADSMathSciNetCrossRefGoogle Scholar
  403. [Pe 1]
    A. Peres: Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996), 1413–1415.MATHADSMathSciNetCrossRefGoogle Scholar
  404. [Pir 1]
    C. Piron: Axiomatique quantique, Helv. Phys. Acta 37 (1964), 439–468.MATHMathSciNetGoogle Scholar
  405. [Pop 1]
    I.Yu. Popov: The extension and the opening in semitransparent surface, J. Math. Phys. 33 (1982), 1685–1689.ADSCrossRefGoogle Scholar
  406. [Posi 1]
    A. Posilicano: Boundary triples and Weyl functions for singular perturbations of self-adjoint operator, Meth. Funct. Anal. Topol. 10 (2004), 57–63.MATHMathSciNetGoogle Scholar
  407. [Pos 1]
    O. Post: Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case, J. Phys. A38 (2005), 4917–4931.ADSMathSciNetGoogle Scholar
  408. [Pos 2]
    O. Post: Spectral convergence of non-compact quasi-one-dimensional spaces, Ann. H. Poincaré 7 (2006), 933–973.MATHMathSciNetCrossRefGoogle Scholar
  409. [Pow 1]
    R. Powers: Self—adjoint algebras of unbounded operators, Commun. Math. Phys. 21 (1971), 85–124.MATHADSMathSciNetCrossRefGoogle Scholar
  410. [Pri 1]
    J.F. Price: Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711–1714.MATHADSMathSciNetCrossRefGoogle Scholar
  411. [Pri 2]
    J.F. Price: Position versus momentum, Phys. Lett. 105A (1984), 343–345.ADSMathSciNetGoogle Scholar
  412. [Pul 1]
    S. Pulmannová: Uncertainty relations and state spaces, Ann. Inst. H. Poincaré : Phys. Théor. 48 (1988), 325–332.MATHGoogle Scholar
  413. [Rad 1]
    J.M. Radcliffe: Some properties of coherent spin states, J. Phys. A4 (1971), 314–323.Google Scholar
  414. [Rel 1]
    F. Rellich: Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der Mathematischen Physik, Math. Z. 49 (1943–44), 702–723.MathSciNetCrossRefGoogle Scholar
  415. [RB 1]
    W. Renger, W. Bulla: Existence of bound states in quantum waveguides under weak conditions, Lett. Math. Phys. 35 (1995), 1–12.MATHADSMathSciNetCrossRefGoogle Scholar
  416. [Ro 1]
    M. Rosenblum: Perturbations of continuous spectra and unitary equivalence, Pacific J. Math. 7 (1957), 997–1010.MATHMathSciNetGoogle Scholar
  417. [Ros 1]
    G.V. Rozenblium: Discrete spectrum distribution of singular differential operators, Doklady Acad. Sci. USSR 202 (1972), 1012–1015.Google Scholar
  418. [RSch 1]
    J. Rubinstein, M. Schatzmann: Variational problems on multiply connected thin strips, I. Basic estimates and convergence of the Laplacian spectrum, Arch. Rat. Mech. Anal. 160 (2001), 271–308.MATHGoogle Scholar
  419. [RuS 1]
    K. Ruedenberg, C.W. Scherr: Free—electron network model for conjugated systems, I. Theory, J. Chem. Phys. 21 (1953), 1565–1581.ADSCrossRefGoogle Scholar
  420. [Rus 1]
    M.B. Ruskai: Absence of discrete spectrum in highly negative ions I, II, Commun. Math. Phys. 82 (1982), 457–469; 85 (1982), 325–327.ADSMathSciNetCrossRefGoogle Scholar
  421. [Rus 2]
    M.B. Ruskai: Limits of excess negative charge of a dynamic diatomic molecule, Ann. Inst. H. Poincaré: Phys. Théor. 52 (1990), 397–414.MATHMathSciNetGoogle Scholar
  422. [Rus 3]
    M.B. Ruskai: Limits on stability of positive molecular ions, Lett. Math. Phys. 18 (1989), 121–132.MATHADSMathSciNetCrossRefGoogle Scholar
  423. [Sai 1]
    T. Saito: Convergence of the Neumann Laplacian on shrinking domains, Analysis 21 (2001), 171–204.MATHADSGoogle Scholar
  424. SMZ 1]
    CM. Savage, S. Marksteiner, and P. Zoller. Atomic Waveguides and Cavities from Hollow Optical Fibres. In: Fundamentals of Quantum Optics III (Ed.- F. Ehlotzky), Springer, Lecture Notes in Physics, vol. 420, 1993; p. 60ADSGoogle Scholar
  425. [Schm 1]
    K. Schmüdgen: On trace representation of linear functionals on unbounded operator algebras, Commun. Math. Phys. 63 (1978), 113–130.MATHADSCrossRefGoogle Scholar
  426. [Schm 2]
    K. Schmudgen: On topologization of unbounded operator algebras, Rep. Math. Phys. 17 (1980), 359–371.MathSciNetCrossRefADSGoogle Scholar
  427. [Schr 1]
    E. Schrodinger: Der stetige Übergang von der Mikro—zur Makromechanik, Naturwissenschaften 14 (1926), 664–666.ADSCrossRefGoogle Scholar
  428. [SRW 1]
    R.L. Schult, D.G. Ravenhall, H.W. Wyld: Quantum bound states in a classically unbounded system of crossed wires, Phys. Rev. B39 (1989), 5476–5479.ADSGoogle Scholar
  429. [Schw 1]
    J. Schwinger: On the bound states of a given potential, Proc. Natl. Acad. Sci. USA 47 (1961), 122–129.ADSMathSciNetCrossRefGoogle Scholar
  430. [Šeb 1]
    Šeb 1] P. Šeba: Wave chaos in singular quantum billiard, Phys. Rev. Lett. 64 (1990), 1855–1858.MATHADSMathSciNetCrossRefGoogle Scholar
  431. [Šeb 2]
    Šeb 2] P. Seba: Complex scaling method for Dirac resonances, Lett. Math. Phys. 16 (1988), 51–59.MATHADSMathSciNetCrossRefGoogle Scholar
  432. [Šeb 3]
    P. Šeba: Some remarks on the δ'—interaction in one dimension, Rep. Math. Phys. 24 (1986), 111–120.MATHMathSciNetCrossRefADSGoogle Scholar
  433. [Šeb 4]
    P. Šeba: The generalized point interaction in one dimension, Czech. J. Phys. B36 (1986), 667–673.ADSCrossRefGoogle Scholar
  434. [SSS 1]
    L.A. Seco, I.M. Sigal, J.P. Solovej: Bounds on a ionization energy of large atoms, Commun. Math. Phys. 131 (1990), 307–315.MATHADSMathSciNetCrossRefGoogle Scholar
  435. [Seg 1]
    I.E. Segal: Irreducible representations of operator algebras, Bull. Am. Math. Soc. 53 (1947), 73–88.MATHCrossRefGoogle Scholar
  436. [Seg 2]
    I.E. Segal: Postulates for general quantum mechanics, Ann. Math. 48 (1947), 930–948.CrossRefGoogle Scholar
  437. [Seg 3]
    I.E. Segal: Mathematical characterization of the physical vacuum for a linear Bose—Einstein field (Foundations of the dynamics of infinite systems III), Illinois Math. J. 6 (1962), 500–523.MATHGoogle Scholar
  438. [Seg 4]
    I.E. Segal: Tensor algebras over Hilbert spaces I, Trans. Am. Math. Soc. 81 (1956), 106–134.MATHCrossRefGoogle Scholar
  439. [Set 1]
    N. Seto: Bargmann inequalities in spaces of arbitrary dimension, Publ. RIMS 9 (1974), 429–461.MathSciNetGoogle Scholar
  440. [Sha 1]
    J. Shabani: Finitely many δ—interactions with supports on concentric spheres, J. Math. Phys. 29 (1988), 660–664.MATHADSMathSciNetCrossRefGoogle Scholar
  441. [SMMC 1]
    T. Shigehara, H. Mizoguchi, T. Mishima, T. Cheon: Realization of a four parameter family of generalized one-dimensional contact interactions by three nearby delta potentials with renormalized strengths, IEICE Trans. Fund. Elec. Comm. Comp. Sci. E82-A (1999), 1708–1713.Google Scholar
  442. [Shu 1]
    M.A. Shubin: Discrete magnetic Laplacian, Commun. Math. Phys. 164 (1994), 259–275.MATHADSMathSciNetCrossRefGoogle Scholar
  443. [Sig 1]
    I.M. Sigal: On long—range scattering, Duke Math. J. 60 (1990), 473–496.MATHMathSciNetCrossRefGoogle Scholar
  444. [SiS 1]
    I.M. Sigal, A. Soffer: The N—particle scattering problem: asymptotic completeness for short—range potentials, Ann. Math. 126 (1987), 35–108.MathSciNetCrossRefGoogle Scholar
  445. [SiS 2]
    I.M. Sigal, A. Soffer: Long—range many—body scattering. Asymptotic clustering for Coulomb—type potentials, Invent. Math. 99 (1990), 1155–143.MathSciNetCrossRefGoogle Scholar
  446. [Si 1]
    B. Simon: Topics in functional analysis, in the proceedings [[Str]], pp. 17–76.Google Scholar
  447. [Si 2]
    B. Simon: Coupling constant analyticity for the anharmonic oscillator,Ann. Phys.58(1970), 76–136.ADSCrossRefGoogle Scholar
  448. [Si 3]
    B. Simon: Schrödinger semigroups,Bull. Am. Math. Soc.7(1982), 447–526.MATHADSCrossRefGoogle Scholar
  449. [Si 4]
    B. Simon: Resonances inN—body quantum systems with dilation analytic potentials and the foundations of time—dependent perturbation theory,Ann. Math.97(1973), 247–272.CrossRefGoogle Scholar
  450. [Si 5]
    B. Simon: On the number of bound states of two—body Schrödinger operators—a review, in the proceedings volume [[LSW]], pp. 305–326.Google Scholar
  451. [Si 6]
    B. Simon: The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys. 97 (1976), 279–288.MATHADSCrossRefGoogle Scholar
  452. [Si 7]
    B. Simon: Phase space analysis of some simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), 119–168.MATHMathSciNetCrossRefGoogle Scholar
  453. [Si 8]
    B. Simon: The Neumann Laplacians of a jelly roll, Proc. AMS 114 (1992), 783–785. [SSp 1] B. Simon, T.Spencer: Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys. 125 (1989), 111–125.MATHCrossRefGoogle Scholar
  454. [SSp 1]
    B. Simon, T.Spencer: Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys. 125 (1989), 111–125.ADSMathSciNetCrossRefGoogle Scholar
  455. [Sin 1]
    K.B. Sinha: On the decay of an unstable particle, Helv. Phys. Acta 45 (1972), 619–628.MathSciNetGoogle Scholar
  456. [Solo 1]
    M. Solomyak: On the spectrum of the Laplacian on regular metric trees, Wave Random Media 14 (2004), S155–S171.MATHADSMathSciNetCrossRefGoogle Scholar
  457. [Sol 1]
    J.P. Solovej: Asymptotic neutrality of diatomic molecules, Commun. Math. Phys. 130 (1990), 185–204.MATHADSMathSciNetCrossRefGoogle Scholar
  458. [SM 1]
    F. Sols, M. Macucci: Circular bends in electron waveguides, Phys. Rev. B41 (1990), 11887–11891.ADSGoogle Scholar
  459. [Ste 1]
    A. Steane: Quantum computing, Rep. Progr. Phys. 61 (1998), 117–173.ADSMathSciNetCrossRefGoogle Scholar
  460. [St 1]
    J. Stubbe: Bounds on the number of bound states for potentials with critical decay at infinity, J. Math. Phys. 31 (1990), 1177–1180.MATHADSMathSciNetCrossRefGoogle Scholar
  461. [Stu 1–4]
    E.C.G. Stueckelberg, M. Guenin, C. Piron, H. Ruegg: Quantum theory in real Hilbert space I–IV, Helv. Phys. Acta 33 (1960), 727–752; 34 (1961), 621–628, 675–698; 35 (1962), 673–695.MATHMathSciNetGoogle Scholar
  462. [Sto 1]
    M.H. Stone: Linear transformations in Hilbert space, III. Operational methods and group theory, Proc. Nat. Acad. Sci. USA 16 (1930), 172–175.MATHADSCrossRefGoogle Scholar
  463. [Sve 1]
    E.C. Svendsen: The effect of submanifolds upon essential self—adjointness and deficiency indices, J. Math. Anal. Appl. 80 (1980), 551–565.MathSciNetCrossRefGoogle Scholar
  464. [Te 1]
    A. Teta: Quadratic forms for singular perturbations of the Laplacian, Publ. RIMS 26 (1990), 803–817.MATHMathSciNetGoogle Scholar
  465. [Til 1]
    H. Tilgner: Algebraical comparison of classical and quantum polynomial observables, Int. J. Theor. Phys. 7 (1973), 67–75.CrossRefGoogle Scholar
  466. [Tim 1]
    W. Timmermann: Simple properties of some ideals of compact operators in algebras of unbounded operators, Math. Nachr. 90 (1979), 189–196.MATHMathSciNetCrossRefGoogle Scholar
  467. [Tim 2]
    W. Timmermann: Ideals in algebras of unbounded operators, Math. Nachr. 92 (1979), 99–110.MathSciNetCrossRefGoogle Scholar
  468. [TBV 1]
    G. Timp et al.: Propagation around a bend in a multichannel electron waveguide, Phys. Rev. Lett. 60 (1988), 2081–2084.ADSCrossRefGoogle Scholar
  469. [Tro 1]
    H. Trotter: On the product of semigroups of operators, Proc. Am. Math. Soc. 10. (1959), 545–551.MATHMathSciNetCrossRefGoogle Scholar
  470. [Tru 1]
    A. Truman: The classical action in nonrelativistic quantum mechanics, J. Math. Phys. 18 (1977), 1499–1509.ADSMathSciNetCrossRefGoogle Scholar
  471. [Tru 2]
    A. Truman: Feynman path integrals and quantum mechanics as ħ → 0, J. Math. Phys. 17 (1976), 1852–1862.ADSMathSciNetCrossRefGoogle Scholar
  472. [Tru 3]
    A. Truman: The Feynman maps and the Wiener integral, J. Math. Phys. 19 (1978), 1742–1750; 20 (1979), 1832–1833.MATHADSMathSciNetCrossRefGoogle Scholar
  473. [Tru 4]
    A. Truman: The polynomial path formulation of the Feynman path integrals, in the proceedings volume [[ACH]], pp. 73–102.Google Scholar
  474. [UH 1]
    J.B.M. Uffink, J. Hilgevoord: Uncertainty principle and uncertainty relations, Found. Phys. 15 (1985), 925–944.ADSMathSciNetCrossRefGoogle Scholar
  475. [UH 2]
    J.B.M. Uffink, J. Hilgevoord: New bounds for the uncertainty principle, Phys. Lett. 105A (1984), 176–178.ADSGoogle Scholar
  476. [Vas 1]
    A.N. Vasiliev: Algebraic aspects of Wightman axiomatics, Teor. mat. fiz. 3 (1970), 24–56 (in Russian).Google Scholar
  477. [VSH 1]
    A.V. Voronin, V.N. SuŠko, S.S. Horužii: The algebra of unbounded operators and vacuum superselection in quantum field theory, 1. Some properties of Op*algebras and vector states on them, Teor. mat. fiz. 59 (1984), 28–48.Google Scholar
  478. [Wa 1]
    X.–P. Wang: Resonances of N—body Schrodinger operators with Stark effect, Ann. Inst. H. Poincaré: Phys. Théor. 52 (1990), 1–30.MATHGoogle Scholar
  479. [WWU 1]
    R.A. Webb et al.: The Aharonov—Bohm effect in normal—metal non—ensemble averaged quantum transport, Physica A140 (1986), 175–182.ADSGoogle Scholar
  480. [We 1]
    J. Weidmann: The virial theorem and its application to the spectral theory of Schrodinger operators, Bull. Am. Math. Soc. 73 (1967), 452–456.MATHMathSciNetCrossRefGoogle Scholar
  481. [We 1]
    R.F. Werner: Quantum states with Einstein—Podolsky—Rosen correlation admitting a hidden—variable model, Phys. Rev. A40, (1989), 4277–4281.ADSGoogle Scholar
  482. [WWW 1]
    G.C. Wick, A.S. Wightman, E.P. Wigner: The intrinsic parity of elementary particles, Phys. Rev. 88 (1952), 101–105.ADSCrossRefGoogle Scholar
  483. [WWW 2]
    G.C. Wick, A.S. Wightman, E.P. Wigner: Superselection rule for charge, Phys. Rev. D1 (1970), 3267–3269.ADSGoogle Scholar
  484. [WG 1]
    A.S. Wightman, L. Gårding: Fields as operator—valued distributions in rela- tivistic quantum theory, Arkiv för Fysik 28 (1964), 129–184.Google Scholar
  485. [Wig 1]
    E.P. Wigner: On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939), 149–204.MathSciNetCrossRefGoogle Scholar
  486. [Wil 1]
    D.N. Williams: New mathematical proof of the uncertainty relations, Amer. J. Phys. 47 (1979), 606–607.ADSMathSciNetCrossRefGoogle Scholar
  487. [Wil 2]
    D.N. Williams: Difficulty with a kinematic concept of unstable particles: the Sz.—Nagy extension and Matthews-Salam-Zwanziger representation, Commun. Math. Phys. 21 (1971), 314–333.MATHADSCrossRefGoogle Scholar
  488. [Wol 1]
    K.B. Wolf: The Heisenberg—Weyl ring in quantum mechanics, in the proceedings volume [[Loe 3]], pp. 189–247.Google Scholar
  489. [Wo 1]
    M.F.K. Wong: Exact solutions of the n—dimensional Dirac—Coulomb problem, J. Math. Phys. 31 (1991), 1677–1680.ADSCrossRefGoogle Scholar
  490. [Ya 1]
    K. Yajima: Existence of solutions for Schrüdinger equations, Commun. Math. Phys. 110 (1987), 415–426.MATHADSMathSciNetCrossRefGoogle Scholar
  491. [Ya 2]
    K. Yajima: Quantum dynamics of time periodic systems, Physica A124 (1984), 613–620.ADSMathSciNetGoogle Scholar
  492. [YK 1]
    K. Yajima, H. Kitada: Bound states and scattering states for time periodic Hamiltonians, Ann. Inst. H. Poincaré: Phys. Theor. 39 (1983), 145–157.MATHMathSciNetGoogle Scholar
  493. [Yea 1]
    F.J. Yeadon: Measures on projections in W*—algebras of type II1 , Bull. London Math. Soc. 15 (1983), 139–145.MATHMathSciNetCrossRefGoogle Scholar
  494. [Zas 1]
    T. Zastawniak: The non-existence of the path measure for the Dirac equation in four space—time dimensions, J. Math. Phys. 30 (1989), 1354–1358.MATHADSMathSciNetCrossRefGoogle Scholar
  495. [Ži 1]
    G.M. Žislin: Discussion of the spectrum of the Schrödinger operator for systems of many particles, Trudy Mosk. mat. obščestva 9 (1960), 81–128.Google Scholar
  496. [Zy 1]
    K. Zyczkowski: Classical and quantum billiards, nonintegrable and pseudointe-grable, Acta Phys. Polon. B23 (1992), 245–269.MathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Personalised recommendations