Skip to main content

Scattering theory

  • Chapter
  • 2420 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

a) Monographs, textbooks, proceedings:

  1. R.A. Adams:Sobolev Spaces, Academic, New York 1975.

    MATH  Google Scholar 

  2. N.I. Akhiezer, I.M. Glazman:Theory of Linear Operators in Hilbert space, 3r dedition, Viša Škola, Kharkov 1978 (in Russian; English translation of the 1st edition: F. Ungar Co., New York 1961, 1963).

    Google Scholar 

  3. S. Albeverioet al., eds.:Feynman Path Integrals, Lecture Notes in Physics, vol. 106, Springer, Berlin 1979.

    Google Scholar 

  4. S. Albeverioet al., eds.:Ideas and Methods in Quantum and Statistical Physics. R. Høegh—Krohn Memorial Volume, Cambridge University Press, Cambridge 1992.

    Google Scholar 

  5. S. Albeverio, F. Gesztesy, R. Høegh—Krohn, H. Holden:Solvable Models in Quantum Mechanics, 2nd edition, with an appendix by P. Exner, AMS Chelsea Publishing, Providence, RI, 2005

    MATH  Google Scholar 

  6. S. Albeverio, R. Høegh—Krohn:Mathematical Theory of Feynman Path Integrals, Lecture Notes in Mathematics, vol. 523, Springer, Berlin 1976.

    Google Scholar 

  7. P.S. Alexandrov:Introduction to Set Theory and General Topology, Nauka, Moscow 1977 (in Russian).

    Google Scholar 

  8. W.O. Amrein:Non—Relativistic Quantum Dynamics, Reidel, Dordrecht 1981.

    MATH  Google Scholar 

  9. W.O. Amrein, J.M. Jauch, K.B. Sinha:Scattering Theory in Quantum Mechanics. Physical Principles and Mathematical Methods, Benjamin, Reading, MA 1977.

    MATH  Google Scholar 

  10. M.A. Antonec, G.M. Žislin, I.A. Šereševskii:On the discrete spectrum of N—body Hamiltonians, an appendix to the Russian translation of the monograph[[JW]], Mir, Moscow 1976 (in Russian).

    Google Scholar 

  11. A.O. Barut, R. Raczka:Theory of Group Representations and Applications,2nd edition, World Scientific, Singapore 1986.

    MATH  Google Scholar 

  12. H. Baumgärtel, M. Wollenberg:Mathematical Scattering Theory, Akademie Verlag, Berlin 1983.

    Google Scholar 

  13. F.A. Berezin:The Second Quantization Method, 2nd edition, Nauka, Moscow 1986 (in Russian; English transl. of the 1st edition: Academic, New York1966).

    MATH  Google Scholar 

  14. F.A. Berezin, M.A. Ŝubin:Schrödinger Equation, Moscow State University Publ., Moscow 1983 (in Russian; English translation: Kluwer, Dordrecht 1996).

    MATH  Google Scholar 

  15. L.C. Biedenharn, J.D. Louck:Angular Momentum in Quantum Theory. Theory and Applications, Addison—Wesley, Reading, MA 1981.

    Google Scholar 

  16. M. Š. Birman, M.Z. Solomyak:Spectral Theory of Self-Adjoint Operators in Hilbert Space, Leningrad State University Lenninguad. 1980 (in Russian; English translation: Kluwer, Dordrecht 1987).

    Google Scholar 

  17. J.D. Bjorken, S.D. Drell:Relativistic Quantum Theory, I. Relativistic Quantum Mechanics, II. Relativistic Quantum Fields, McGraw—Hill, New York 1965.

    Google Scholar 

  18. H. Boerner:Darstellungen von Gruppen, 2.Ausgabe, Springer, Berlin 1967 (English translation: North-Holland, Amsterdam 1970).

    MATH  Google Scholar 

  19. N.N. Bogolyubov, A.A. Logunov, A.I. Oksak, I.T. Todorov:General Principles of Quantum Field Theory, Nauka, Moscow 1987 (in Russian; a revised edition ofFoundations of the Axiomatic Approach to Quantum Field Theoryby the first two and the last author, Nauka, Moscow 1969;English translation: W.A. Benjamin, Reading, MA1975, referred to as [[ BLT ]]).

    Google Scholar 

  20. N.N. Bogolyubov, D.V. Širkov:An Introduction to the Theory of Quantized Fields, 4th edition, Nauka, Moscow 1984 (in Russian; English translation of the 3rd edition: Wiley—Interscience, New York1980).

    Google Scholar 

  21. D. Bohm :Quantum Theory, Prentice-Hall, New York 1952.

    MATH  Google Scholar 

  22. O. Bratelli, D.W. Robinson:Operator Algebras and Quantum Statistical Mechanics I, II, Springer, New York 1979, 1981.

    Google Scholar 

  23. P. Busch, P.J. Lahti, P. Mittelstaedt:The Quantum Theory of Measurement, 2nd revised edition, Springer LNP m2, Berlin 1996.

    MATH  Google Scholar 

  24. K. Chadan, P. Sabatier:Inverse Problems in Quantum Scattering Theory, 2nd edition, Springer, New York 1989.

    MATH  Google Scholar 

  25. Tai—Pei Cheng, Ling—Fong Li:Gauge Theory of Elementary Particle Physics,Clarendon Press, Oxford 1984.

    Google Scholar 

  26. P.R. Chernoff:Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators, Mem. Amer. Math. Soc., Providence, RI 1974.

    Google Scholar 

  27. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon:Schrödinger operators, with Application to Quantum Mechanics and Global Geometry, Springer, Berlin 1987; corrected and extended 2nd printing, Springer, Berlin 2007.

    MATH  Google Scholar 

  28. E.B. Davies:Quantum Theory of Open Systems, Academic, London 1976.

    MATH  Google Scholar 

  29. E.B. Davies:One—Parameter Semigroups, Academic, London 1980.

    MATH  Google Scholar 

  30. A.S. Davydov:Quantum Mechanics, 2nd edition, Nauka, Moscow 1973 (in Russian; English translation of the 1st edition: Pergamon Press, Oxford 1965).

    Google Scholar 

  31. Yu.N. Demkov, V.N. Ostrovskii:The Zero—Range Potential Method in Atomic Physics, Leningrad University Press, Leningrad 1975 (in Russian).

    Google Scholar 

  32. M. Demuth, P. Exner, H. Neidhardt, V.A. Zagrebnov, eds.:Mathematical Results in Quantum Mechanics, Operator Theory: Advances and Applications, vol. 70; Birkhäuser, Basel 1994.

    Google Scholar 

  33. J. Derezinski, Ch. Gerard:Scattering theory of classical and quantum N—particle systems, Texts and Monographs in Physics, Springer, Berlin 1997.

    Google Scholar 

  34. P.A.M. Dirac:The Principles of Quantum Mechanics, 4th edition, Clarendon Press, Oxford 1969.

    Google Scholar 

  35. J. Dittrich, P. Exner, eds.:Rigorous Results in Quantum Dynamics, World Scientific, Singapore 1991.

    MATH  Google Scholar 

  36. J. Dittrich, P. Exner, M. Tater, eds.:Mathematical Results in Quantum Mechanics, Operator Theory: Advances and Appl., vol. 108; Birkhäuser, Basel 1999.

    Google Scholar 

  37. J. Dixmier:Les algèbres des opérateurs dans l'espace hilbertien (algèbres de von Neumann), 2me edition, Gauthier—Villars, Paris 1969.

    Google Scholar 

  38. J. Dixmier:Les C*—algèbras and leur représentations, 2me edition, Gauthier-Vilars, Paris 1969.

    Google Scholar 

  39. N. Dunford, J.T. Schwartz:Linear Operators, I. General Theory, II. Spectral Theory, III. Spectral Operators, Interscience Publications, New York 1958, 1962, 1971.

    Google Scholar 

  40. A.R. Edmonds:Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, NJ 1957; a revised reprint Princeton 1996.

    MATH  Google Scholar 

  41. S.J.L. van Eijndhoven, J. de Graaf:A Mathematical Introduction to Dirac Formalism, North—Holland, Amsterdam 1986.

    MATH  Google Scholar 

  42. G.G. Emch :Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley—Interscience, New York 1972.

    MATH  Google Scholar 

  43. P. Exner:Open Quantum Systems and Feynman Integrals, D. Reidel, Dordrecht 1985.

    MATH  Google Scholar 

  44. P. Exner, J. Keating, P. Kuchment, T. Sunada, A. Teplyaev, eds.:Analysison Graphs and Applications, Proceedings of the Isaac Newton Institute programme“Analysis on Graphs and Applications”, AMS “Contemporary Mathematics” Series, 2008

    Google Scholar 

  45. P. Exner, J. Neidhardt, eds.:Order, Disorder and Chaos in Quantum Systems,Operator Theory: Advances and Applications, vol. 46; Birkhäuser, Basel 1990.

    Google Scholar 

  46. P. Exner, P. Seba, eds.:Applications of Self—Adjoint Extensions in Quantum Physics, Lecture Notes in Physics, vol. 324; Springer, Berlin 1989.

    Google Scholar 

  47. P. Exner, P. Seba, eds.:Schrödinger Operators, Standard and Non—standard, World Scientific, Singapore 1989.

    Google Scholar 

  48. W. Feller:An Introduction to Probability Theory and Its Applications I, II, 3rd and 2nd edition, resp., Wiley, New York 1968, 1971.

    Google Scholar 

  49. R.P. Feynman:Statistical Mechanics. A Set of Lectures, W.A. Benjamin, Reading, MA. 1972.

    Google Scholar 

  50. R.P. Feynman, A.R. Hibbs:Quantum Mechanics and Path Integrals, McGraw— Hill, New York 1965.

    MATH  Google Scholar 

  51. L. Fonda, G.C. Ghirardi:Symmetry Principles in Quantum Physics, Marcel Dekker, New York 1970.

    Google Scholar 

  52. I.M. Gel'fand, G.M. Silov:Generalized Functions and Operations upon Them, vol.I, 2nd edition, Fizmatgiz, Moscow 1959(in Russian; English translation: Academic, New York 1969).

    Google Scholar 

  53. I.M. Glazman:Direct Methods of Qualitative Analysis of Singular Differential Operators, Fizmatgiz, Moscow 1963(in Russian).

    Google Scholar 

  54. J. Glimm, A. Jaffe:Quantum Physics: A Functional Integral Point of View, 2nd edition, Springer, New York 1987.

    Google Scholar 

  55. A. Grothendieck:Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc., vol. 16, Providence, RI 1955.

    Google Scholar 

  56. R. Haag:Local Quantum Physics. Fields, Particles, Algebras, 2nd revised and enlarged edition Springer, Berlin 1996.

    MATH  Google Scholar 

  57. P. Halmos:Measure Theory, 2nd edition, Van Nostrand, New York 1973.

    Google Scholar 

  58. P. Halmos:A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ 1967.

    MATH  Google Scholar 

  59. M. Hamermesh:Group Theory and Its Applications to Physical Problems, Addison-Wesley, Reading, MA. 1964.

    Google Scholar 

  60. G.H. Hardy, E.M. Wright:An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, oxford 1979.

    MATH  Google Scholar 

  61. B. Helffer: Semi—Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, vol. 1366, Springer, Berlin 1988.

    Google Scholar 

  62. E. Hille, R.S. Phillips: Functional Analysis and Semigroups, Am. Math. Soc. Colloq. Publ., vol. 31, Providence, Rhode Island 1957; 3rd printing 1974.

    Google Scholar 

  63. A.S. Holevo: Probabilistic and Statistical Aspects of the Quantum Theory, Nauka, Moscow 1980 (in Russian; English translation: North-Holland, Amsterdam 1982).

    Google Scholar 

  64. L. Hörmander: The Analysis of Linear Partial Differential Operators III, Springer, Berlin 1985; corrected reprint 1994.

    MATH  Google Scholar 

  65. S.S. Horužii: An Introduction to Algebraic Quantum Field Theory, Nauka, Moscow 1986 (in Russian; English translation: Kluwer, Dordrecht 1990).

    Google Scholar 

  66. L. van Hove: Surcertaines représentations unitaires d‘un group infini des transformations, Memoires Acad. Royale de Belgique XXVI/6, Bruxelles 1951.

    Google Scholar 

  67. K. Huang: Statistical Mechanics, Wiley, New York 1963.

    Google Scholar 

  68. K. Huang: Quarks, Leptons and Gauge Fields, World Scientific, Singapore 1982.

    Google Scholar 

  69. N.E. Hurt: Geometric Quantization in Action, D. Reidel, Dordrecht 1983.

    MATH  Google Scholar 

  70. C. Itzykson, J.—B. Zuber: Quantum Field Theory, McGraw—Hill, New York 1980.

    Google Scholar 

  71. V. Jarn ík: Differential Calculus II, 3rd edition, Academia, Prague 1976 (in Czech).

    Google Scholar 

  72. V. Jarník: Integral Calculus II, 2nd edition, Academia, Prague 1976 (in Czech).

    MATH  Google Scholar 

  73. J.M. Jauch: Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA 1968.

    MATH  Google Scholar 

  74. T.F. Jordan: Linear Operators for Quantum Mechanics, Wiley, New York 1969.

    MATH  Google Scholar 

  75. K. J örgens, J. Weidmann: Spectral Properties of Hamiltonian Operators, Lecture Notes in Mathematics, vol. 313, Springer, Berlin 1973.

    Google Scholar 

  76. E. Kamke: Differentialgleichungen realer Funktionen, Akademische Verlagsges-selschaft, Leipzig 1956.

    Google Scholar 

  77. D. Kastler, ed.: C‡-algebras and Their Applications to Statistical Mechanics and Quantum Field Theory, North—Holland, Amsterdam 1976.

    MATH  Google Scholar 

  78. T. Kato: Perturbation Theory for Linear Operators, Springer, 2nd edition, Berlin 1976; reprinted in 1995.

    MATH  Google Scholar 

  79. J.L. Kelley: General Topology, Van Nostrand, Toronto 1957; reprinted by Springer, Graduate Texts in Mathematics, No. 27, New York 1975.

    Google Scholar 

  80. A.A. Kirillov: Elements of the Representation Theory, 2nd edition, Nauka, Moscow 1978 (in Russian; French translation: Mir, Moscow 1974).

    Google Scholar 

  81. A.A. Kirillov, A.D. Gvišiani: Theorems and Problems of Functional Analysis, Nauka, Moscow 1979 (in Russian; French translation: Mir, Moscow 1982).

    MATH  Google Scholar 

  82. J.R. Klauder, B.-S. Skagerstam, eds.: Coherent States. Applications in Physics and Mathematical Physics, World Scientific, Singapore 1985.

    MATH  Google Scholar 

  83. W. Klingenberg: A Course in Differential Geometry, Springer, New York 1978.

    MATH  Google Scholar 

  84. A.N. Kolmogorov, S.V. Fomin: Elements of Function Theory and Functional Analysis, 4th edition, Nauka, Moscow 1976 (in Russian; English translation of the 2nd ed.: Graylock 1961; French translation of the 3rd edition: Mir, Moscow 1974).

    Google Scholar 

  85. H.-H. Kuo: Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, vol. 463, Springer, Berlin 1975.

    Google Scholar 

  86. A.G. Kuroš: Lectures on General Algebra, 2nd edition, Nauka, Moscow 1973 (in Russian).

    Google Scholar 

  87. L.D. Landau, E.M. Lifšic: Quantum Mechanics. Nonrelativistic Theory, 3rd ed., Nauka, Moscow 1974 (in Russian; English translation: Pergamon, New York 1974).

    Google Scholar 

  88. P.D. Lax, R.S. Phillips: Scattering Theory, Academic, New York 1967; 2nd edition, with appendices by C.S. Morawetz and G. Schmidt, 1989.

    Google Scholar 

  89. E.H. Lieb, M. Loss: Analysis, 2nd edition, Graduate Studies in Mathematics, vol. 14, AMS, Providence, RI, 2001

    Google Scholar 

  90. E.H. Lieb, B. Simon, A.S. Wightman, eds.: Studies in Mathematical Physics. Essays in Honor of V. Bargmann, Princeton University Press, Pinceton, NJ 1976.

    Google Scholar 

  91. E.M. Loebl, ed.: Group Theory and Its Applications I–III, Academic, New York 1967.

    Google Scholar 

  92. J.T. Londergan, J.P. Carini, D.P. Murdock: Binding and Scattering in Two-Dimensional Systems. Applications to Quantum Wires, Waveguides and Photonic Crystals, Springer LNP m60, Berlin 1999.

    MATH  Google Scholar 

  93. G. Ludwig: Foundations of Quantum Mechanics I, II, Springer, Berlin 1983,1985.

    Google Scholar 

  94. G. Ludwig: An Axiomatic Basis for Quantum Mechanics, I. Derivation of Hilbert Space Structure, Springer, Berlin 1985.

    Google Scholar 

  95. S. Lundquist, A. Ranfagni, Y. Sa—yakanit, L.S. Schulman: Path Summation: Achievements and Goals, World Scientific, Singapore 1988.

    Google Scholar 

  96. G. Mackey: Mathematical Foundations of Quantum Mechanics, Benjamin, New York 1963; reprinted by Dover Publications INC., Mineola, NY, 2004.

    MATH  Google Scholar 

  97. G. Mackey: Induced Representations of Groups and Quantum Mechanics, W.A. Benjamin, New York 1968.

    MATH  Google Scholar 

  98. S. MacLane, G. Birkhoff: Algebra, 2nd edition, Macmillan, New York 1979.

    Google Scholar 

  99. A.I. Markuševič: A Short Course on the Theory of Entire Functions, 2nd edition, Fizmatgiz, Moscow 1961 (in Russian; English translation: Amer. Elsevier 1966).

    Google Scholar 

  100. V.P. Maslov: Perturbation Theory and Asymptotic Methods, Moscow State University Publ., Moscow 1965 (in Russian; French translation: Dunod, Paris 1972).

    Google Scholar 

  101. V.P. Maslov, M.V. Fedoryuk: Semiclassical Approximation to Quantum Mechanical Equations, Nauka, Moscow 1976 (in Russian).

    Google Scholar 

  102. K. Maurin: Hilbert Space Methods, PWN, Warsaw 1959 (in Polish; English translation: Polish Sci. Publ., Warsaw 1972).

    MATH  Google Scholar 

  103. A. Messiah: M écanique quantique I, II, Dunod, Paris 1959 (English translation: North—Holland, Amsterdam 1961, 1963).

    Google Scholar 

  104. C. Müller: Spectral Harmonics, Lecture Notes In Mathematics, vol. 17, Springer,Berlin 1966.

    Google Scholar 

  105. M.A. Naimark: Normed Rings, 2nd edition, Nauka, Moscow 1968 (in Russian; English translation: Wolters—Noordhoff, Groningen 1972).

    Google Scholar 

  106. M.A. Naimark: Linear Differential Operators, 2nd edition, Nauka, Moscow 1969 (in Russian; English translation of the 1st edition: Harrap & Co., London 1967, 1968).

    Google Scholar 

  107. M.A. Naimark:Group Representation Theory, Nauka, Moscow 1976 (in Russian; French translation: Mir, Moscow 1979).

    Google Scholar 

  108. J. von Neumann : Mathematische Grundlagen der Quantenmechanik, Springer Verlag, Berlin 1932 (English translation: Princeton University Press, Princeton, NJ 1955, reprinted 1996).

    MATH  Google Scholar 

  109. R.G. Newton: Scattering Theory of Waves and Particles, 2nd edition, Springer Verlag, New York 1982; reprinted by Dover Publications Inc., Mineola, NY 2002.

    MATH  Google Scholar 

  110. Y. Ohnuki, S. Kamefuchi: Quantum Field Theory and Parastatistics, Springer, Heidelberg 1982.

    MATH  Google Scholar 

  111. K.R. Parthasarathy: Introduction to Probability and Measure, New Delhi 1980.

    Google Scholar 

  112. D.B. Pearson: Quantum Scattering and Spectral Theory, Techniques of Physics, vol. 9, Academic, London 1988.

    Google Scholar 

  113. P. Perry; Scattering Theory by the Enss Method, Harwood, London 1983.

    MATH  Google Scholar 

  114. C. Piron: Foundations of Quantum Physics, W.A. Benjamin, Reading, MA 1976.

    MATH  Google Scholar 

  115. L.S.Pontryagin:ContinuousGroups,3rd edition,Nauka,Moscow1973(inRussian; English translation of the 2nd edition: Gordon and Breach, New York 1966).

    Google Scholar 

  116. V.S. Popov: Path Integrals in Quantum Theory and Statistical Physics, Atom-izdat, Moscow 1976 (in Russian; English translation: D. Reidel, Dordrecht 1983).

    Google Scholar 

  117. E. Prugovečki: Quantum Mechanics in Hilbert Space, 2nd edition, Academic, New York 1981.

    MATH  Google Scholar 

  118. M. Reed, B. Simon: Methods of Modern Mathematical Physics, I. Functional Analysis, II. Fourier Analysis. Self—Adjointness, III. Scattering Theory, IV. Analysis of Operators, Academic, New York 1972–79.

    Google Scholar 

  119. D.R. Richtmyer: Principles of Advanced Mathematical Physics I, Springer, New York 1978.

    MATH  Google Scholar 

  120. F. Riesz, B. Sz.—Nagy: Lecons d'analyse fonctionelle, 6me edition, Akademic Kiadó, Budapest 1972.

    Google Scholar 

  121. W. Rudin: Real and Complex Analysis, 3rd edition, McGraw—Hill, New York 1987.

    MATH  Google Scholar 

  122. W. Rudin: Functional Analysis, 2nd edition, McGraw—Hill, New York 1991.

    MATH  Google Scholar 

  123. B.V. Šabat: Introduction to Complex Analysis, Nauka, Moscow 1969 (in Russ.).

    Google Scholar 

  124. S. Sakai: C*—Algebras and W*—Algebras, Springer, Berlin 1971.

    Google Scholar 

  125. R.Schatten: A Theoryof CrossSpaces,Princeton UniversityPress, Princeton,1950.

    Google Scholar 

  126. M. Schechter: Operator Methods in Quantum Mechanics, North—Holland, New York 1981; reprinted by Dover Publications Inc., Mineola, NY 2002.

    MATH  Google Scholar 

  127. K. Schmüdgen: Unbounded Operator Algebras and Representation Theory, Akademie—Verlag, Berlin 1990.

    Google Scholar 

  128. L.S. Schulman: Techniques and Applications of Path Integration, Wiley—Inter-science, New York 1981.

    MATH  Google Scholar 

  129. L. Schwartz: Théorie des distributions I, II, Hermann, Paris 1957, 1959.

    Google Scholar 

  130. L. Schwartz: Analyse Mathématique I, II, Hermann, Paris 1967.

    Google Scholar 

  131. S.S. Schweber: An Introduction to Relativistic Quantum Field Theory, Row, Peterson & Co., Evanston, IL 1961.

    Google Scholar 

  132. I.E. Segal: Mathematical Problems of Relativistic Physics, with an appendix by G.W. Mackey, Lectures in Appl. Math., vol. 2, American Math. Society, Providence, RI 1963.

    Google Scholar 

  133. E. Seiler: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Physics, vol. 159, Springer, Berlin 1982.

    Google Scholar 

  134. B. Simon: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ 1971.

    MATH  Google Scholar 

  135. B. Simon: The P(Φ)2 Euclidian (Quantum) Field Theory, Princeton University Press, Princeton, NJ 1974.

    Google Scholar 

  136. B. Simon: Trace Ideals and Their Applications, Cambridge University Press, Cambridge 1979.

    MATH  Google Scholar 

  137. B. Simon: Functional Integration and Quantum Physics, Academic, New York 1979; 2nd edition, AMS Chelsea Publishing, Providence, RI 2005.

    MATH  Google Scholar 

  138. Ya.G. Sinai: Theory of Phase Transitions. Rigorous Results, Nauka, Moscow 1980 (in Russian).

    Google Scholar 

  139. A.N. Širyaev: Probability, Nauka, Moscow 1980 (in Russian).

    Google Scholar 

  140. A.A. Slavnov, L.D. Faddeev: Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow 1978 .(in Russian).

    Google Scholar 

  141. H.-J. Stöckmann: Quantum chaos. An introduction, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  142. P. Stollmann: Caught by Disorder: Bound States in Random Media, Birkhäuser, Basel 2001.

    MATH  Google Scholar 

  143. M.H. Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, Amer. Math. Colloq. Publ., vol. 15, New York 1932.

    Google Scholar 

  144. R.F. Streater, ed.: Mathematics of Contemporary Physics, Academic, London 1972.

    Google Scholar 

  145. R.F. Streater, A. Wightman: PCT, Spin, Statistics and All That, W.A. Benjamin, New York 1964.

    Google Scholar 

  146. A.S. Švarc: Mathematical Foundations of the Quantum Theory, Atomizdat, Moscow 1975 (in Russian).

    Google Scholar 

  147. A.E. Taylor: Introduction to Functional Analysis, 6th edition, Wiley, New York 1967.

    Google Scholar 

  148. J.R. Taylor: Scattering Theory. The Quantum Theory of Nonrelativistic Collisions, Wiley, New York 1972.

    Google Scholar 

  149. G. Teschl: Jacobi operators and completely integrable nonlinear lattices, Math. Surveys and Monographs, vol. 72; AMS, Providence, RI 2000.

    Google Scholar 

  150. B. Thaller: The Dirac Equation, Springer, Berlin 1992.

    Google Scholar 

  151. W. Thirring: A Course in Mathematical Physics, 3. Quantum Mechanics of Atoms and Molecules, 4. Quantum Mechanics of Large Systems, Springer, New York 1981, 1983.

    Google Scholar 

  152. V.M. Tikhomirov: Banach Algebras, an appendix to the monograph [[ KF ]] pp. 513–528 (in Russian).

    Google Scholar 

  153. B.R. Vainberg: Asymptotic methods in the Equations of Mathematical Physics, Moscow State University Publishing, Moscow 1982 (in Russian).

    Google Scholar 

  154. V.S. Varadarajan: Geometry of Quantum Theory I, II, Van Nostrand Reinhold, New York 1968, 1970.

    Google Scholar 

  155. V. Votruba: Foundations of the Special Theory of Relativity, Academia, Prague 1969 (in Czech).

    Google Scholar 

  156. R. Weder, P. Exner, B. Grebert, eds.: Mathematical Results in Quantum Mechanics, Contemporary Mathematics, vol. 307, AMS, Providence, RI 2002.

    Google Scholar 

  157. J. Weidmann: .Linear Operators in Hilbert Space, Springer, Heidelberg 1980 (2nd edition in German: Lineare Operatoren in Hilberträumen, I. Grundlagen, II. Anwendungen, B.G. Teubner, Stuttgart 2000, 2003).

    Google Scholar 

  158. E.P. Wigner: Symmetries and Reflections, Indiana University Press, Blooming-ton, IN 1971.

    Google Scholar 

  159. D.R. Yafaev: Mathematical Scattering Theory: General Theory, Transl. Math. Monographs, vol. 105; AMS, Providence, RI, 1992

    Google Scholar 

  160. K. Yosida: Functional Analysis, 3rd edition,Springer, Berlin 1971.

    MATH  Google Scholar 

  161. D.P. Želobenko: Compact Lie Groups and Their Representations, Nauka, Moscow 1970 (in Russian).

    Google Scholar 

b) Research and review papers:

  1. A. Abrams, J. Cantarella, J.G. Fu, M. Ghomi, R. Howard: Circles minimize most knot energies, Topology 42 (2003), 381–394.

    MATH  MathSciNet  Google Scholar 

  2. S.L. Adler: Quaternionic quantum field theory, Commun. Math. Phys. 104 (1986), 611–656.

    MATH  ADS  Google Scholar 

  3. D. Aerts, I. Daubechies: Physical justification for using the tensor product to describe two quantum systems as one joint system, Helv. Phys. Acta 51 (1978),661–675.

    MathSciNet  Google Scholar 

  4. D. Aerts, I. Daubechies: A mathematical condition for a sublattice of a propo-sitional system to represent a physical subsystem, with a physical interpretation,Lett. Math. Phys. 3 (1979), 19–27.

    MATH  ADS  MathSciNet  Google Scholar 

  5. J. Agler, J. Froese: Existence of Stark ladder resonances, Commun. Math.Phys. 100 (1985), 161–172.

    MATH  ADS  MathSciNet  Google Scholar 

  6. S. Agmon, I. Herbst, E. Skibsted: Perturbation of embedded eigenvalues in the generalized N —body problem, Commun. Math. Phys. 122 (1989), 411–438.

    MATH  ADS  MathSciNet  Google Scholar 

  7. J. Aguilar, J.—M. Combes: A class of analytic perturbations for one—body Schrödinger Hamiltonians, Commun. Math. Phys. 22 (1971), 269–279.

    MATH  ADS  MathSciNet  Google Scholar 

  8. E. Akkermans, A. Auerbach, J. Avron, B. Shapiro: Relation between persistent currents and the scattering matrix, Phys. Rev. Lett. 66 (1991), 76–79.

    ADS  Google Scholar 

  9. S. Alama, P. Deift, R. Hempel: Eigenvalue branches of Schrodinger operator H — λW in a gap of σ(H), Commun. Math. Phys. 121 (1989), 291–321.

    MATH  ADS  MathSciNet  Google Scholar 

  10. S. Albeverio: On bound states in the continuum of N—body systems and the virial theorem, Ann. Phys. 71 (1972), 167–276.

    ADS  Google Scholar 

  11. S. Albeverio, C. Cacciapuoti, D. Finco: Coupling in the singular limit of thin quantum waveguides, J. Math. Phys. 48 (2007), 032103.

    ADS  MathSciNet  Google Scholar 

  12. S. Albeverio, R. Høegh—Krohn: Oscillatory integrals and the method of stationary phase, Inventiones Math. 40 (1977), 59–106.

    MATH  ADS  Google Scholar 

  13. S. Albeverio, L. Nizhnik: Approximation of general zero-range potentials,Ukrainian Math. J. 52 (2000), 582–589.

    MATH  MathSciNet  Google Scholar 

  14. W.O. Amrein, M.B. Cibils: Global and Eisenbud—Wigner time delay in scattering theory, Helv. Phys. Acta 60 (1987), 481–500.

    MathSciNet  Google Scholar 

  15. W.O. Amrein, V. Georgescu: Bound states and scattering states in quantum mechanics, Helv. Phys. Acta 46 (1973), 635–658.

    MathSciNet  Google Scholar 

  16. J. Anderson: Extensions, restrictions and representations of C*—algebras,Trans. Am. Math. Soc. 249 (1979), 303–329.

    MATH  Google Scholar 

  17. J.—P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A20 (1987), 3687–3712.

    ADS  MathSciNet  Google Scholar 

  18. J.—P. Antoine, A. Inoue, C. Trapani: Partial *—algebras of closed operators,I. Basic theory and the Abelian case, Publ. RIMS 26 (1990), 359–395.

    MATH  MathSciNet  Google Scholar 

  19. J.—P. Antoine, W. Karwowski: Partial *—algebras of Hilbert space operators,in Proceedings of the 2nd Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics (H. Baumgärtel et al., eds.), Teubner, Leipzig 1984;pp. 29–39.

    Google Scholar 

  20. A. Arai, H. Kawano: Enhanced binding in a general class of quantum field models, Rev. Math. Phys. 15 (2003), 387–423.

    MATH  MathSciNet  Google Scholar 

  21. H. Araki: Type of von Neumann algebra associated with free field, Progr.Theor. Phys. 32 (1964), 956–965.

    MATH  ADS  MathSciNet  Google Scholar 

  22. H. Araki: C*—approach in quantum field theory, Physica Scripta 24 (1981),981–985.

    MathSciNet  Google Scholar 

  23. H. Araki, J.—P. Jurzak: On a certain class of *—algebras of unbounded operators,Publ. RIMS 18 (1982), 1013–1044.

    MATH  MathSciNet  Google Scholar 

  24. H. Araki, Y. Munakata, M. Kawaguchi, T. Goto: Quantum Field Theory of Unstable Particles, Progr. Theor. Phys. 17 (1957), 419–442.

    MATH  ADS  MathSciNet  Google Scholar 

  25. D. Arnal, J.—P. Jurzak: Topological aspects of algebras of unbounded operators,.J. Funct. Anal. 24 (1977), 397–425.

    MATH  MathSciNet  Google Scholar 

  26. J. Asch, P. Duclos, P. Exner: Stability of driven systems with growing gaps.Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053–1069.

    MATH  MathSciNet  Google Scholar 

  27. M.S. Ashbaugh, R.D. Benguria: Optimal bounds of ratios of eigenvalues of one—dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials, Commun. Math. Phys. 124 (1989), 403–415.

    MATH  ADS  MathSciNet  Google Scholar 

  28. M.S. Ashbaugh, R.D. Benguria: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601–628.

    MathSciNet  Google Scholar 

  29. M.S. Ashbaugh, P. Exner: Lower bounds to bound state energies in bent tubes,Phys. Lett. A150 (1990), 183–186.

    ADS  MathSciNet  Google Scholar 

  30. M.S. Ashbaugh, E.M. Harrell II : Perturbation theory for resonances and large barrier potentials, Commun. Math. Phys. 83 (1982), 151–170.

    MATH  ADS  MathSciNet  Google Scholar 

  31. M.S. Ashbaugh, E.M. Harrell II, R. Svirsky: On the minimal and maximal eigenvalue gaps and their causes, Pacific J. Math. 147 (1991), 1–24.

    MATH  MathSciNet  Google Scholar 

  32. M.S. Ashbaugh, C. Sundberg: An improved stability result for resonances,Trans. Am. Math. Soc. 281 (1984), 347–360.

    MATH  MathSciNet  Google Scholar 

  33. A. Avila, S. Jitomirskaya: Solving the ten Martini problem, Lecture Notes in Physics 690(2006), 5–16.

    MathSciNet  ADS  Google Scholar 

  34. Y. Avishai, D. Bessis, B.M. Giraud, G. Mantica: Quantum bound states in open geometries, Phys. Rev. B44 (1991), 8028–8034.

    ADS  Google Scholar 

  35. J. Avron: The lifetime of Wannier ladder states, Ann. Phys. 143 (1982), 33–53.

    ADS  Google Scholar 

  36. J. Avron, P. Exner, Y. Last: Periodic Schrödinger operators with large gaps and Wannier—Stark ladders, Phys. Rev. Lett. 72 (1994), 896–899.

    MATH  ADS  Google Scholar 

  37. J. Avron, A. Raveh, B. Zur: Adiabatic quantum transport in multiply connected systems, Rev. Mod. Phys. 60 (1988), 873–915.

    ADS  MathSciNet  Google Scholar 

  38. J. Avron, R. Seiler, L.G. Yaffe: Adiabatic theorem and application to the quantum Hall effect, Commun. Math. Phys. 110 (1987), 33–49.

    MATH  ADS  MathSciNet  Google Scholar 

  39. D. Babbitt, E. Balslev: Local distortion techniques and unitarity of the S—matrix for the 2—body problem, J. Math. Anal. Appl. 54 (1976), 316–349.

    MathSciNet  Google Scholar 

  40. V. Bach, J. Fröhlich, I.M. Sigal: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys. 207(1999), 249–290.

    MATH  ADS  Google Scholar 

  41. V. Bargmann: On a Hilbert space of analytical functions and an associate integral transform I, II, Commun. Pure Appl. Math. 14 (1961), 187–214; 20 (1967),1–101.

    MATH  MathSciNet  Google Scholar 

  42. V. Bargmann: Remarks on Hilbert space of analytical functions, Proc. Natl.Acad. Sci. USA 48 (1962), 199–204, 2204.

    MATH  ADS  MathSciNet  Google Scholar 

  43. V. Bargmann: On unitary ray representations of continuous groups, Ann. Math.59 (1954), 1–46.

    MathSciNet  Google Scholar 

  44. V. Bargmann: Note on some integral inequalities, Helv. Phys. Acta 45 (1972),249–257.

    Google Scholar 

  45. V. Bargmann: On the number of bound states in a central field of forces, Proc.Natl. Acad. Sci. USA 38 (1952), 961–966.

    MATH  ADS  MathSciNet  Google Scholar 

  46. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer: Deformation theory and quantization I, II, Ann. Phys. 111 (1978), 61–110, 111–151.

    MATH  ADS  MathSciNet  Google Scholar 

  47. H. Baumgärtel: Partial resolvent and spectral concentration, Math. Nachr. 69(1975), 107–121.

    MATH  MathSciNet  Google Scholar 

  48. H. Baumgärtel, M. Demuth: Perturbation of unstable eigenvalues of finite multiplicity, J. Funct. Anal. 22 (1976), 187–203.

    MATH  Google Scholar 

  49. H. Baumgärtel, M. Demuth, M. Wollenberg: On the equality of resonances(poles of the scattering amplitude) and virtual poles, M. Nachr. 86 (1978), 167–174.

    MATH  Google Scholar 

  50. H. Behncke: The Dirac equation with an anomalous magnetic moment, Math.Z. 174 (1980), 213–225.

    MATH  MathSciNet  Google Scholar 

  51. F.A. Berezin, L.D. Faddeev: A remark on Schrödinger's equation with a singular potential, Sov. Acad. Sci. Doklady 137 (1961), 1011–1014 (in Russian).

    MathSciNet  Google Scholar 

  52. M. van den Berg: On the spectral counting function for the Dirichlet Laplacian,J. Funct. Anal. 107 (1992), 352–361.

    MATH  MathSciNet  Google Scholar 

  53. M.V. Berry: Quantal phase factor accompanying adiabatic changes, Proc. Roy.Soc. London A392 (1984), 45–57.

    ADS  MathSciNet  Google Scholar 

  54. M.V. Berry: The adiabatic limit and the semiclassical limit, J. Phys. A17(1984), 1225–1233.

    ADS  MathSciNet  Google Scholar 

  55. M.V. Berry, K.E. Mount: Semiclassical approximations in wave mechanics,Rep. Progr. Phys. 35 (1972), 315–389.

    ADS  Google Scholar 

  56. A. Beskow, J. Nilsson: The concept of wave function and the irreducible representations of the Poincaré group, II. Unstable systems and the exponential decay law, Arkiv f¨ör Physik 34 (1967), 561–569.

    Google Scholar 

  57. G. Birkhoff, J. von Neumann: The logic of quantum mechanics, Ann. Math.37 (1936), 823–843.

    Google Scholar 

  58. M.Š. Birman: On the spectrum of singular boundary problems, Mat. Sbornik 55 (1961), 125–174 (in Russian).

    MathSciNet  Google Scholar 

  59. M.Š. Birman: Existence conditions for the wave operators, Doklady Acad. Sci.USSR 143 (1962), 506–509 (in Russian).

    MathSciNet  Google Scholar 

  60. M.Š. Birman: An existence criterion for the wave operators. Izvestiya Acad.Sci. USSR, ser. mat. 27 (1963), 883–906 (in Russian).

    MATH  MathSciNet  Google Scholar 

  61. M.Š. Birman: A local existence criterion for the wave operators, Izvestiya Acad.Sci. USSR, ser. mat. 32 (1968), 914–942 (in Russian).

    MATH  MathSciNet  Google Scholar 

  62. J. Blank, P. Exner: Remarks on tensor products and their applications in quantum theory, I. General considerations, II. Spectral properties, Acta Univ. Carolinae, Math. Phys. 17 (1976), 75–89; 18 (1977), 3–35.

    MATH  MathSciNet  Google Scholar 

  63. J. Blank, P. Exner, M. Havlíček: Quantum—mechanical pseudo—Hamiltonians, Czech. J. Phys. B29 (1979), 1325–1341.

    ADS  Google Scholar 

  64. R. Blankenbecler, M.L. Goldberger, B. Simon: The bound states of weakly coupled long—range one—dimensional Hamiltonians, Ann. Phys. 108 (1977), 69–78.

    ADS  MathSciNet  Google Scholar 

  65. D. Bollé, K. Chadan, G. Karner: On a sufficient condition for the existence of N—particle bound states, J. Phys. A19 (1986), 2337–2343.

    ADS  Google Scholar 

  66. H.J. Borchers: Algebras of unbounded operators in quantum field theory, Physica 124A (1984), 127–144.

    ADS  MathSciNet  Google Scholar 

  67. D. Borisov, P. Exner: Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A37 (2004), 3411–3428.

    ADS  MathSciNet  Google Scholar 

  68. D. Borisov, P. Exner, R. Gadyl'shin: Geometric coupling thresholds in a two—dimensional strip, J. Math. Phys. 43 (2002), 6265–6278.

    MATH  ADS  MathSciNet  Google Scholar 

  69. D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřík: Bound states in weakly deformed strips and layers, Ann. H. Poincaré 2 (2001), 553–572.

    MATH  Google Scholar 

  70. F. Boudjeedaa, L. Chetouani, L. Guechi, T.F. Hamman: Path integral treatment for a screened potential, J. Math. Phys. 32 (1991), 441–446.

    ADS  MathSciNet  Google Scholar 

  71. J. Brasche, P. Exner, Yu. Kuperin, P. Šeba: Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184 (1994), 112–139.

    MATH  MathSciNet  Google Scholar 

  72. J. Brasche, A. Teta: Spectral analysis and scattering theory for Schrödinger operators with an interaction supported by regular curve, in the proceedings volume [[ AFHL ]], pp. 197–211.

    Google Scholar 

  73. J. Brüning, P. Exner, V. Geyler: Large gaps in point—coupled periodic systems of manifolds, J. Phys. A: Math. Gen. 36 (2003), 4875–4890.

    MATH  ADS  Google Scholar 

  74. J. Brüning, V.A. Geyler: Scattering on compact manifolds with infinitely thin horns, J. Math. Phys. 44 (2003), 371–405.

    MATH  ADS  MathSciNet  Google Scholar 

  75. J. Brüning, V.A. Geyler, V.A. Margulis, M.A. Pyataev: Ballistic conductance of a quantum sphere, J. Phys. A35 (2002), 4239–4247.

    ADS  Google Scholar 

  76. J. Brüning, V. Geyler, K. Pankrashkin: Cantor and band spectra for periodic quantum graphs with magnetic fields, Commun. Math. Phys. 269 (2007), 87–105.

    MATH  ADS  Google Scholar 

  77. D.C. Brydges, J. Fröhlich, A. Sokal: A new proof of existence and nontriviality of the continuum Φ4 2 and Φ4 3 quantum field theories, Commun. Math. Phys. 91 (1983), 141–186.

    ADS  Google Scholar 

  78. E.N. Bulgakov, P. Exner, K.N. Pichugin, A.F. Sadreev: Multiple bound states in scissor—shaped waveguides, Phys. Rev. B66 (2002), 155109

    ADS  Google Scholar 

  79. W. Bulla, F. Gesztesy, W. Renger, B. Simon: Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc. 127 (1997), 1487–1495.

    MathSciNet  Google Scholar 

  80. W. Bulla, T. Trenkler: The free Dirac operator on compact and non—compact graphs, J. Math. Phys. 31 (1990), 1157–1163.

    MATH  ADS  MathSciNet  Google Scholar 

  81. L.J. Bunce, J.D.M. Wright: Quantum measures and states on Jordan algebras, Commun. Math. Phys. 98 (1985), 187–202.

    MATH  ADS  MathSciNet  Google Scholar 

  82. V.S. Buslaev, L. Dmitrieva: Bloch electrons in an external electric field, Leningrad Math. J. 1 (1991), 287–320.

    MathSciNet  Google Scholar 

  83. M. Büttiker: Small normal—metal loop coupled to an electron reservoir, Phys. Rev. B32 (1985), 1846–1849.

    ADS  Google Scholar 

  84. M. Büttiker: Absence of backscattering in the quantum Hall effect in multiprobeconductors, Phys. Rev. B38 (1988), 9375–9389.

    ADS  Google Scholar 

  85. C. Cacciapuoti, P. Exner: Nontrivial edge coupling from a Dirichlet networksqueezing: the case of a bent waveguide, J. Phys. A40 (2007), F511–F523.

    ADS  MathSciNet  Google Scholar 

  86. J.W. Calkin: Two—sided ideals and congruence in the ring of bounded operators in Hilbert space, Ann. Math. 42 (1941), 839–873.

    MathSciNet  Google Scholar 

  87. F. Calogero: Upper and lower limits for the number of bound states in a given central potential, Commun. Math. Phys. 1 (1965), 80–88.

    MATH  ADS  MathSciNet  Google Scholar 

  88. R.H. Cameron: A family of integrals serving to connect the Wiener Feynman integrals,J. Math. Phys. 39 (1961), 126–141.

    Google Scholar 

  89. R.H. Cameron: The Ilstow and Feynman integrals, J d'Analyse Math. 10(1962–63), 287–361.

    Google Scholar 

  90. R.H. Cameron: Approximation to certain Feynman integrals, J. d'Analyse Math. 21 (1968), 337–371.

    MATH  Google Scholar 

  91. J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock: Bound states and resonances in quantum wires, Phys. Rev. B46 (1992), 15538–15541.

    ADS  Google Scholar 

  92. J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock: Multiple bound states in sharply bent waveguides, Phys. Rev. B48 (1993), 4503–4514.

    ADS  Google Scholar 

  93. J.P. Carini, J.T. Londergan, D.P. Murdock, D. Trinkle, C.S. Yung: Bound states in waveguides and bent quantum wires, I. Applications to waveguide systems, II. Electrons in quantum wires, Phys. Rev. B55 (1997), 9842–9851, 9852–9859.

    ADS  Google Scholar 

  94. R. Carmona, W.Ch. Masters, B. Simon: Relativistic Schrodinger operators, J. Funct. Anal. 91 (1990), 117–142.

    MATH  MathSciNet  Google Scholar 

  95. G. Carron, P. Exner, D. Krejčiřík: Topologically non—trivial quantum layers, J. Math. Phys. 45 (2004), 774–784.

    MATH  ADS  MathSciNet  Google Scholar 

  96. G. Casati, I. Guarneri: Non—recurrent behaviour in quantum dynamics, Commun. Math. Phys. 95 (1984), 121–127.

    MATH  ADS  MathSciNet  Google Scholar 

  97. D. Castrigiano, U. Mutze: On the commutant of an irreducible set of operators in a real Hilbert space, J. Math. Phys. 26 (1985), 1107–1110.

    MATH  ADS  MathSciNet  Google Scholar 

  98. I. Catto, P. Exner, Ch. Hainzl: Enhanced binding revisited for a spinless particle in non-relativistic QED, J. Math. Phys. 45 (2004), 4174–4185.

    MATH  ADS  MathSciNet  Google Scholar 

  99. K. Chadan, Ch. DeMol: Sufficient conditions for the existence of bound states in a potential without a spherical symmetry, Ann. Phys. 129 (1980), 466–478.

    MATH  ADS  MathSciNet  Google Scholar 

  100. V. Chandrasekhar, M.J. Rooks, S. Wind, D.E. Prober: Observation of Aharonov-Bohm electron interference effects with periods h/e and h/2e in individual micron-size, normal-metal rings, Phys. Rev. Lett. 55 (1985), 1610–1613.

    ADS  Google Scholar 

  101. T. Chen, V. Vougalter, S. Vugalter: The increase of binding energy and enhanced binding in nonrelativistic QED, J. Math. Phys. 44 (2003), 1961–1970.

    MATH  ADS  MathSciNet  Google Scholar 

  102. P. Chenaud, P. Duclos, P. Freitas, D. Krejčiřík: Geometrically induced discrete spectrum in curved tubes, Diff. Geom. Appl. 23 (2005), 95–105.

    MATH  Google Scholar 

  103. T. Cheon, P. Exner: An approximation to δ' couplings on graphs, J. Phys. A37 (2004), L329–335.

    ADS  MathSciNet  Google Scholar 

  104. T. Cheon, T. Shigehara: Realizing discontinuous wave functions with renor-malized short-range potentials, Phys. Lett. A243 (1998), 111–116.

    ADS  Google Scholar 

  105. S. Cheremshantsev: Hamiltonians with zero—range interactions supported by a Brownian path, Ann. Inst. H. Poincaré: Phys. Théor. 56 (1992), 1–25.

    MATH  MathSciNet  Google Scholar 

  106. P.R. Chernoff: A note on product formulas for operators, J. Funct. Anal. 2 (1968), 238–242.

    MATH  MathSciNet  Google Scholar 

  107. P.R. Chernoff, R.Hughes: A new class of point interactions in one dimension, J. Funct. Anal. 111(1993), 97–117.

    MATH  MathSciNet  Google Scholar 

  108. L. Chetouani, F.F. Hamman: Coulomb's Green function in an n—dimensional Euclidean space, J. Math. Phys. 27 (1986), 2944–2948.

    MATH  ADS  MathSciNet  Google Scholar 

  109. L. Chetouani, A. Chouchaoui, T.F. Hamman: Path integral solution for the Coulomb plus sector potential, Phys. Lett. A161 (1991), 87–97.

    ADS  Google Scholar 

  110. Y. Colin de Verdière: Bohr—Sommerfeld rules to all orders, Ann. H. Poincaré 6 (2005), 925–936.

    MATH  Google Scholar 

  111. Ph. Combe, G. Rideau, R. Rodriguez, M. Sirugue—Collin: On the cylindrical approximation to certain Feynman integrals, Rep. Math. Phys. 13(1978), 279–294.

    MATH  MathSciNet  ADS  Google Scholar 

  112. J.—M. Combes, P. Duclos, R. Seiler: Krein's formula and one—dimensional multiple well, J. Funct. Anal. 52 (1983), 257–301.

    MATH  MathSciNet  Google Scholar 

  113. J.—M. Combes, P. Duclos, M. Klein, R. Seiler: The shape resonance, Commun. Math. Phys. 110 (1987), 215–236.

    MATH  ADS  MathSciNet  Google Scholar 

  114. J.—M. Combes, P.D. Hislop: Stark ladder resonances for small electric fields, Commun. Math. Phys. 140 (1991), 291–320.

    MATH  ADS  MathSciNet  Google Scholar 

  115. M. Combescure: Spectral properties of periodically kicked quantum Hamiltonians, J. Stat. Phys. 59 (1990), 679–690.

    MATH  ADS  MathSciNet  Google Scholar 

  116. J. Conlon: The ground state of a Bose gas with Coulomb interaction I, II, Commun. Math. Phys. 100 (1985), 355–379; 108 (1987), 363–374.

    ADS  MathSciNet  Google Scholar 

  117. J.G. Conlon, E.H. Lieb, H.—T. Yau: The N 7/5 law for charged bosons, Commun. Math. Phys. 116 (1988), 417–488.

    ADS  MathSciNet  Google Scholar 

  118. A. Connes: The Tomita—Takesaki theory and classification of type III factors, in the proceedings volume [[ Kas ]], pp. 29–46.

    Google Scholar 

  119. J.M. Cook: The mathematics of second quantization, Trans. Am. Math. Soc. 74 (1953), 222–245.

    MATH  Google Scholar 

  120. J.M. Cook: Convergence of the Møller wave matrix, J. Math. Phys. 36 (1957), 82–87.

    Google Scholar 

  121. H. Cornean, A. Jensen, V. Moldoveanu: A rigorous proof for the Landauer-Büttiker formula, J. Math. Phys. 46 (2005), 042106.

    ADS  MathSciNet  Google Scholar 

  122. F.A.B. Coutinho, C.P. Malta, J. Fernando Perez: Sufficient conditions for the existence of bound states of N particles with attractive potentials, Phys. Lett. 100A (1984), 460–462.

    ADS  MathSciNet  Google Scholar 

  123. E. Christensen: Measures on projections and physical states, Commun. Math. Phys. 86 (1982), 529–538.

    MATH  ADS  MathSciNet  Google Scholar 

  124. R.E. Crandall: Exact propagator for reflectionless potentials, J. Phys. A16 (1983), 3005–3011.

    ADS  MathSciNet  Google Scholar 

  125. M. Cwikel: Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106 (1977), 93–100.

    MathSciNet  Google Scholar 

  126. H.L. Cycon: Resonances defined by modified dilations, Helv. Phys. Acta 58 (1985), 969–981.

    MathSciNet  Google Scholar 

  127. I. Daubechies, E.H. Lieb: One electron relativistic molecule with Coulomb interaction, Commun. Math. Phys. 90 (1983), 497–510.

    MATH  ADS  MathSciNet  Google Scholar 

  128. G. Dell'Antonio, L. Tenuta: Quantum graphs as holonomic constraints, J. Math. Phys. 47 (2006), 072102.

    ADS  MathSciNet  Google Scholar 

  129. M. Demuth: Pole approximation and spectral concentration, Math. Nachr. 73 (1976), 65–72.

    MATH  MathSciNet  Google Scholar 

  130. J. Derezyński: A new proof of the propagation theorem for N-body quantum systems, Commun. Math. Phys. 122 (1989), 203-231.

    ADS  Google Scholar 

  131. J. Derezyński: Algebraic approach to the N —body long—range scattering, Rep. Math. Phys. 3 (1991), 1–62.

    Google Scholar 

  132. C. DeWitt, S.G. Low, L.S. Schulman, A.Y. Shiekh: Wedges I, Found. Phys. 16 (1986), 311–349.

    ADS  MathSciNet  Google Scholar 

  133. C. DeWitt—Morette: The semiclassical expansion, Ann. Phys. 97 (1976), 367–399; 101, 682–683.

    ADS  MathSciNet  Google Scholar 

  134. C. DeWitt—Morette, A. Maheswari, B. Nelson: Path—integration in nonrelativistic quantum mechanics, Phys. Rep. 50 (1979), 255–372.

    ADS  MathSciNet  Google Scholar 

  135. J. Dittrich, P. Exner: Tunneling through a singular potential barrier, J. Math.Phys. 26 (1985), 2000–2008.

    MATH  ADS  MathSciNet  Google Scholar 

  136. J. Dittrich, P. Exner: A non—relativistic model of two—particle decay I–IV, Czech. J. Phys. B37 (1987), 503–515, 1028–1034; B38 (1988), 591–610; B39 (1989), 121–138.

    ADS  MathSciNet  Google Scholar 

  137. J. Dittrich, P. Exner, P. Seba: Dirac operators with a spherically symmetric δ—shell interaction, J. Math. Phys. 30 (1989), 2975–2982.

    MathSciNet  Google Scholar 

  138. J. Dittrich, P. Exner, P. Seba: Dirac Hamiltonians with Coulombic potential and spherically symmetric shell contact interaction, J. Math. Phys. 33 (1992), 2207–2214.

    MATH  ADS  MathSciNet  Google Scholar 

  139. J. Dittrich, J. Kříž: Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J. Phys. A35 (2002), L269–275.

    ADS  Google Scholar 

  140. J. Dittrich, J. Kříž: Bound states in straight quantum waveguides with combined boundary conditions, J. Math. Phys. 43 (2002), 3892–3915.

    MATH  ADS  MathSciNet  Google Scholar 

  141. J. Dixmier: Sur la relation i(PQ-QP) = I, Compos. Math. 13 (1956), 263–269.

    MathSciNet  Google Scholar 

  142. J.D. Dollard, C.N. Friedmann: Existence and completeness of the Møller wave operators for radial potentials satisfying\(\int_0^1 {\left. r \right|} v\left( r \right)\left| {dr} \right. + \int_1^\infty {\left| v \right.\left( r \right)} \,\left| {dr} \right.\, < \infty \), J. Math. Phys. 21 (1980), 1336–1339.

    Google Scholar 

  143. E. Doron, U. Smilansky: Chaotic spectroscopy, Phys. Rev. Lett. 68 (1992), 1255–1258.

    ADS  Google Scholar 

  144. T. Drisch: Generalization of Gleason's theorem, Int. J. Theor. Phys. 18 (1978), 239–243.

    MathSciNet  Google Scholar 

  145. P. Duclos, P. Exner: Curvature—induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys. 7 (1995), 73–102.

    MATH  MathSciNet  Google Scholar 

  146. P. Duclos, P. Exner, D. Krejčiřík: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13–28.

    MATH  ADS  Google Scholar 

  147. P. Duclos, P. Exner, B. Meller: Exponential bounds on curvature—induced resonances in a two-dimensional Dirichlet tube, Helv. Phys. Acta 71 (1998), 133–162.

    MATH  MathSciNet  Google Scholar 

  148. P. Duclos, P. Exner, B. Meller: Open quantum dots: resonances from perturbed symmetry and bound states in strong magnetic fields, Rep. Math. Phys. 47 (2001), 253–267.

    MATH  MathSciNet  ADS  Google Scholar 

  149. P. Duclos, P. Exner, P. Š̌tovíček: Curvature—induced resonances in a two—dimensional Dirichlet tube, Ann.Inst. H.Poincaré: Phys. Théor. 62 (1995), 81–101.

    MATH  Google Scholar 

  150. P. Duclos, P. Š̌tovíček: Floquet Hamiltonians with pure spectrum, Commun. Math. Phys. 177 (1996), 327–347.

    MATH  ADS  Google Scholar 

  151. P. Duclos, P. Š̌tovíček, M. Vittot: Perturbations of an eigen-value from a dense point spectrum: a general Floquet Hamiltonian, Ann. Inst. H. Poincaré 71 (1999), 241–301.

    MATH  Google Scholar 

  152. I.H. Duru: Quantum treatment of a class of time—dependent potentials, J. Phys. A22 (1989), 4827–4833.

    ADS  MathSciNet  Google Scholar 

  153. J.—P. Eckmann, Ph.C. Zabey: Impossibility of quantum mechanics in a Hilbert space over a finite field, Helv. Phys. Acta 42 (1969), 420–424.

    MathSciNet  Google Scholar 

  154. M. Eilers, M. Horst: The theorem of Gleason for nonseparable Hilbert spaces, Int. J. Theor. Phys. 13 (1975), 419–424.

    MathSciNet  Google Scholar 

  155. T. Ekholm, H. Kovařík: Stability of the magnetic Schrödinger operator in a waveguide, Comm. PDE 30 (2005), 539–565.

    MATH  Google Scholar 

  156. K.D. Elworthy, A. Truman: A Cameron—Martin formula for Feynman integrals (the origin of Maslov indices), in Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, vol. 153, Springer, Berlin 1982; pp. 288–294.

    Google Scholar 

  157. G.G. Emch: Mécanique quantique quaternionique et relativité restreinte I, II, Helv. Phys. Acta 36 (1963), 739–769, 770–788.

    MathSciNet  Google Scholar 

  158. G.G. Emch, K.B. Sinha: Weak quantization in a non—perturbative model, J. Math. Phys. 20 (1979), 1336–1340.

    ADS  MathSciNet  Google Scholar 

  159. V. Enss: Asymptotic completeness for quantum—mechanical potential scattering, I. Short—range potentials, II. Singular and long—range potentials, Commun. Math. Phys. 61 (1978), 285–291; Ann. Phys. 119 (1979), 117–132.

    MATH  ADS  MathSciNet  Google Scholar 

  160. V. Enss: Topics in scattering theory for multiparticle systems: a progress report, Physica A124 (1984), 269–292.

    ADS  MathSciNet  Google Scholar 

  161. V. Enss, K. Veselič: Bound states and propagating states for time dependent Hamiltonians, Ann. Inst. H. Poincaré: Phys. Théor. 39 (1983), 159–191.

    MATH  Google Scholar 

  162. G. Epifanio: On the matrix representation of unbounded operators, J. Math. Phys. 17 (1976), 1688–1691.

    MATH  ADS  MathSciNet  Google Scholar 

  163. G. Epifanio, C. Trapani: Remarks on a theorem by G. Epifanio, J. Math. Phys. 20 (1979), 1673–1675.

    MATH  ADS  MathSciNet  Google Scholar 

  164. G. Epifanio, C. Trapani: Some spectral properties in algebras of unbounded operators, J. Math. Phys. 22 (1981), 974–978.

    MATH  ADS  MathSciNet  Google Scholar 

  165. G. Epifanio, C. Trapani: V *—algebras: a particular class of unbounded operator algebras, J. Math. Phys. 25 (1985), 2633–2637.

    ADS  MathSciNet  Google Scholar 

  166. W.D. Evans, R.T. Lewis, Y. Saito: Some geometric spectral properties of N—body Schrödinger operators, Arch. Rat. Mech. Anal. 113 (1991), 377–400.

    MATH  MathSciNet  Google Scholar 

  167. P. Exner: Bounded—energy approximation to an unstable quantum system, Rep. Math. Phys. 17 (1980), 275–285.

    MATH  MathSciNet  ADS  Google Scholar 

  168. P. Exner: Generalized Bargmann inequalities, Rep. Math. Phys. 19 (1984), 249–255.

    MATH  MathSciNet  ADS  Google Scholar 

  169. P. Exner: Representations of the Poincare group associated with unstable articles, Phys. Rev. D28 (1983), 3621–2627.

    ADS  MathSciNet  Google Scholar 

  170. P. Exner: Remark on the energy spectrum of a decaying system, Commun. Math. Phys. 50 (1976), 1–10.

    ADS  MathSciNet  Google Scholar 

  171. P. Exner: One more theorem on the short—time regeneration rate, J. Math. Phys. 30 (1989), 2563–2564.

    MATH  ADS  MathSciNet  Google Scholar 

  172. P. Exner: A solvable model of two—channel scattering, Helv. Phys. Acta 64 (1991), 592–609.

    MathSciNet  Google Scholar 

  173. P. Exner: A model of resonance scattering on curved quantum wires, Ann. Physik 47 (1990), 123–138.

    ADS  MathSciNet  Google Scholar 

  174. P. Exner: The absence of the absolutely continuous spectrum for δ' Wannier—Stark ladders, J. Math. Phys. 36 (1995), 4561–4570.

    MATH  ADS  MathSciNet  Google Scholar 

  175. P. Exner: Lattice Kronig—Penney models, Phys. Rev. Lett. 74 (1995), 3503–3506.

    ADS  Google Scholar 

  176. P. Exner: Contact interactions on graph superlattices, J. Phys. A29 (1996), 87–102.

    ADS  MathSciNet  Google Scholar 

  177. P. Exner: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313–320.Ex 12 ] P. Exner: A duality between Schrodinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincare: Phys. Theor. 66 (1997), 359–371.

    MATH  ADS  MathSciNet  Google Scholar 

  178. P. Exner: A duality between Schrodinger operators on graphs and certain Jacobi matrices, Ann. Inst. H. Poincare: Phys. Theor. 66 (1997), 359–371.

    MATH  MathSciNet  Google Scholar 

  179. P. Exner: Magnetoresonances on a lasso graph, Found. Phys. 27 (1997), 171–190.Ex

    ADS  MathSciNet  Google Scholar 

  180. P. Exner: Point interactions in a tube, in “Stochastic Processes: Physics andGeometry: New Interplayes II” (A volume in honor of S. Albeverio; F. Gesztesy et al., eds.); CMS Conference Proceedings, vol. 29, Providence, R.I. 2000; pp. 165– 174

    Google Scholar 

  181. P. Exner: Leaky quantum graphs: a review, in the proceedings volume [EKKST]; arXiv: 0710.5903 [math-ph]

    Google Scholar 

  182. P. Exner: An isoperimetric problem for leaky loops and related mean-chord nequalities, J. Math. Phys. 46 (2005), 062105

    Google Scholar 

  183. P. Exner: Necklaces with interacting beads: isoperimetric problems, AMS “Contemporary Math” Series, vol. 412, Providence, RI, 2003; pp. 141–149.

    MathSciNet  Google Scholar 

  184. P. Exner, M. Fraas: The decay law can have an irregular character, J. Phys. A40 (2007), 1333–1340.

    ADS  MathSciNet  Google Scholar 

  185. P. Exner, P. Freitas, D. Krejčiřík: A lower bound to the spectral threshold in curved tubes, Proc. Roy. Soc. A460 (2004), 3457–3467.

    ADS  MathSciNet  Google Scholar 

  186. P. Exner, R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275–7286.

    ADS  Google Scholar 

  187. P. Exner, R. Gawlista, P. Seba, M. Tater: Point interactions in a strip, Ann. Phys. 252 (1996), 133–179.

    MATH  ADS  MathSciNet  Google Scholar 

  188. P. Exner, E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrodinger operators depending on curvature, Proceedings of the Conference “Mathematical Results in Quantum Mechanics”(QMath7, Prague 1998); Operator Theory: Advances and Applications, Birkhauser, Basel; pp. 47–53.

    Google Scholar 

  189. P. Exner, E.M. Harrell, M. Loss: Inequalities for means of chords, with appli cation to isoperimetric problems, Lett. Math. Phys. 75 (2006), 225–233; addendum 77 (2006), 219.

    Google Scholar 

  190. P. Exner, T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439–1450.

    ADS  MathSciNet  Google Scholar 

  191. P. Exner, G.I. Kolerov: Uniform product formulae, with application to the Feynman—Nelson integral for open systems, Lett. Math. Phys. 6 (1982), 151–159.

    ADS  Google Scholar 

  192. P. Exner, D. Krejčiřík: Quantum waveguide with a lateral semitransparent barrier: spectral and scattering properties, J. Phys. A32 (1999), 4475–4494.

    ADS  MathSciNet  Google Scholar 

  193. P. Exner, D. Krejčiřík: Bound states in mildly curved layers, J. Phys. A34 (2001), 5969–5985.

    ADS  MathSciNet  Google Scholar 

  194. P. Exner, H. Linde, T. Weidl: Lieb–Thirring inequalities for geometrically induced bound states, Lett. Math. Phys. 70 (2004), 83–95.

    MATH  ADS  MathSciNet  Google Scholar 

  195. P. Exner, H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ': an inverse Klauder phenomenon with norm-resolvent convergence, Commun. Math. Phys. 224 (2001), 593–612.

    ADS  MathSciNet  Google Scholar 

  196. P. Exner, K. Nemcova: Quantum mechanics of layers with a finite number of point perturbations, J. Math. Phys. 43 (2002), 1152–1184.

    MATH  ADS  MathSciNet  Google Scholar 

  197. P. Exner, K. Nemcova: Magnetic layers with periodic point perturbations, Rep. Math. Phys. 52 (2003), 255–280.

    MATH  MathSciNet  ADS  Google Scholar 

  198. P. Exner, O. Post: Convergence of spectra of graph—like thin manifolds, J. Geom. Phys. 54 (2005), 77–115.

    MATH  ADS  MathSciNet  Google Scholar 

  199. P. Exner, O. Post: Convergence of resonances on thin branched quantum wave guides, J. Math. Phys. 48 (2007), 092104

    ADS  MathSciNet  Google Scholar 

  200. P. Exner, P. Šeba: Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), 2574–2580.

    MATH  ADS  MathSciNet  Google Scholar 

  201. P. Exner, P. Šeba: Electrons in semiconductor microstructures: a challenge to operator theorists, in the proceedings volume [[ EŠ 2 ]], pp. 79–100.

    Google Scholar 

  202. P. Exner, P. Šeba: Quantum motion in two planes connected at one point, Lett. Math. Phys. 12 (1986), 193–198.

    MATH  ADS  MathSciNet  Google Scholar 

  203. P. Exner, P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386–391, 2254.

    ADS  Google Scholar 

  204. P. Exner, P. Šeba: Schrödinger operators on unusual manifolds, in the proceed ings volume [[AFHL]], pp. 227–253.

    Google Scholar 

  205. P. Exner, P. Seba: Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), 7–26.

    MATH  MathSciNet  ADS  Google Scholar 

  206. P. Exner, P. Šeba: Trapping modes in a curved electromagnetic waveguide with perfectly conducting walls, Phys. Lett. A144 (1990), 347–350.

    ADS  MathSciNet  Google Scholar 

  207. EŠ 8] P. Exner, P. Šeba: A “hybrid plane” with spin-orbit interaction, Russ. J. Math. Phys. 14 (2007), 401–405.

    Google Scholar 

  208. P. Exner, P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, Phys. Lett. A228 (1997), 146–150.

    ADS  Google Scholar 

  209. P. Exner, P. Šeba, P. Š̌tovířek: On existence of a bound state in an L-shaped waveguide, Czech. J. Phys. B39 (1989), 1181–1191.

    ADS  Google Scholar 

  210. P. Exner, P. Seba, P. Š̌tovířek: Semiconductor edges can bind electrons, Phys. Lett. A150 (1990), 179–182.

    ADS  Google Scholar 

  211. P. Exner, P. Seba, P. Š̌tovířek: Quantum interference on graphs controlled by an external electric field, J. Phys. A21 (1988), 4009–4019.

    ADS  Google Scholar 

  212. P. Exner, P. Šeba, M. Tater, D. Vaněk: Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys. 37 (1996), 4867–4887.

    MATH  ADS  MathSciNet  Google Scholar 

  213. P. Exner, E. Šerešová: Appendix resonances on a simple graph, J. Phys. A27 (1994), 8269–8278.

    ADS  Google Scholar 

  214. P. Exner, M. Tater, D. Vaněk: A single-mode quantum transport in serial—structure geometric scatterers, J. Math. Phys. 42(2001), 4050–4078.

    MATH  ADS  MathSciNet  Google Scholar 

  215. P. Exner, O. Turek: Approximations of singular vertex couplings in quantum graphs, Rev. Math. Phys. 19 (2007), 571–606.

    MATH  MathSciNet  Google Scholar 

  216. P. Exner, S.A. Vugalter: Bounds states in a locally deformed waveguide: the critical case, Lett. Math. Phys. 39 (1997), 59–68.

    MATH  MathSciNet  Google Scholar 

  217. P. Exner, S.A. Vugalter: Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window, Ann. Inst. H. Poincarě: Phys. Theor. 65 (1996), 109–123.

    MATH  MathSciNet  Google Scholar 

  218. P. Exner, S.A. Vugalter: On the number of particles that a curved quantum waveguide can bind, J. Math. Phys. 40 (1999), 4630–4638.

    MATH  ADS  MathSciNet  Google Scholar 

  219. P. Exner, K. Yoshitomi: Asymptotics of eigenvalues of the Schrodinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344–358.

    MATH  ADS  MathSciNet  Google Scholar 

  220. P. Exner, V.A. Zagrebnov: Bose-Einstein condensation in geometrically de formed tubes, J. Phys. A38 (2005), L463–470.

    ADS  MathSciNet  Google Scholar 

  221. W.G. Faris: Inequalities and uncertainty principles, J. Math. Phys. 19 (1978), 461–466.

    ADS  MathSciNet  Google Scholar 

  222. W.G. Faris: Product formulas for perturbation of linear operators, J. Funct. Anal. 1 (1967), 93–107.

    MATH  MathSciNet  Google Scholar 

  223. J. Feldmann, J. Magnen, V. Rivasseau, R. Seněor: A renormalizable field theory: the massive Gross—Neveu model in two dimensions, Commun. Math. Phys. 103 (1986), 67–103.

    ADS  Google Scholar 

  224. J.G.M. Fell: The dual spaces of c*—algebras, Trans. Am. Math. Soc. 94 (1960), 365–403.

    MATH  MathSciNet  Google Scholar 

  225. R.P. Feynman: Space—time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys. 20 (1948), 367–387.

    ADS  MathSciNet  Google Scholar 

  226. D. Finkelstein, J.M. Jauch, S. Schminovich, D. Speiser: Foundations of quaternionic quantum mechanics, J. Math. Phys. 3 (1962), 207–220.

    ADS  Google Scholar 

  227. D. Finkelstein, J.M. Jauch, S. Schminovich, D. Speiser: Principle of general Q covariance, J. Math. Phys. 4 (1963), 788–796.

    MATH  ADS  Google Scholar 

  228. V.A. Fock: Konfigurationsraum und zweite Quantelung, Z. Phys. 75 (1932), 622–647.

    MATH  ADS  Google Scholar 

  229. K.O. Friedrichs: On the perturbation of continuous spectra, Commun. Appl. Math. 1 (1948), 361–406.

    MathSciNet  Google Scholar 

  230. J. Frohlich, E.H. Lieb, M. Loss: Stability of Coulomb systems with magnetic fields, I. The one—electron atom, Commun. Math. Phys. 104 (1986), 251–270.

    ADS  MathSciNet  Google Scholar 

  231. T. Fulop, I. Tsutsui: A free particle on a circle with point interaction, Phys. Lett. A264 (2000), 366–374.

    ADS  MathSciNet  Google Scholar 

  232. G. Gamow: Zur Quantetheorie des Atomkernes, Z. Phys. 51 (1928), 204–212.

    ADS  Google Scholar 

  233. K. Gawedzki, A. Kupiainen: Gross—Neveu model through convergent expan sions, Commun. Math. Phys. 102 (1985), 1–30.

    ADS  MathSciNet  Google Scholar 

  234. I.M. Gel'fand, M.A. Naimark: On embedding of a normed ring to the ring of operators in Hilbert space, Mat. Sbornik 12 (1943), 197–213 (in Russian).

    Google Scholar 

  235. C. Gerard, A. Martinez, D. Robert: Breit—Wigner formulas for the scattering phase and the total cross section in the semiclassical limit, Commun. Math. Phys. 121 (1989), 323–336.

    MATH  ADS  MathSciNet  Google Scholar 

  236. N.I. Gerasimenko, B.S. Pavlov: Scattering problem on non—compact graphs, Teor. mat. fiz. 74 (1988), 345–359 (in Russian).

    MathSciNet  Google Scholar 

  237. F. Gesztesy, H. Grosse, B. Thaller: Efficient method for calculating relativistic corrections to spin 1/2 particles, Phys. Rev. Lett. 50 (1983), 625–628.

    ADS  Google Scholar 

  238. F. Gesztesy, H. Grosse, B. Thaller: First order relativistic corrections and the spectral concentration, Adv. Appl. Math. 6 (1985), 159–176.

    MATH  MathSciNet  Google Scholar 

  239. F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sadun, B. Simon, P. Vogel: Trapping and cascading in the large coupling limit, Commun. Math. Phys. 118 (1988), 597–634.

    MATH  ADS  Google Scholar 

  240. F. Gesztesy, P. Šeba: New analytically solvable models of relativistic point interactions, Lett. Math. Phys. 13 (1987), 213–225.

    Google Scholar 

  241. F. Gesztesy, B. Simon, B. Thaller: On the self—adjointness of Dirac operator with anomalous magnetic moment, Proc. Am. Math. Soc. 94 (1985), 115–118.

    MATH  MathSciNet  Google Scholar 

  242. V. Glaser, H. Grosse, A. Martin: Bounds on the number of eigenvalues of the Schrödinger operator, Commun. Math. Phys. 59 (1978), 197–212.

    MATH  ADS  MathSciNet  Google Scholar 

  243. V. Glaser, A. Martin, H. Grosse, W. Thirring: A family of optimal condi tions for the absence of bound states in a potential, in [[ LSW ]], pp. 169–194.

    Google Scholar 

  244. R.J. Glauber: Photon correlations, Phys. Rev. Lett. 10 (1963), 84–86.

    ADS  MathSciNet  Google Scholar 

  245. R.J. Glauber: Coherent and incoherent states of the radiation fields, Phys. Rev. 131 (1963), 2766–2788.

    ADS  MathSciNet  Google Scholar 

  246. A.M. Gleason: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 91–110.

    MathSciNet  Google Scholar 

  247. J. Glimm, A. Jaffe: Boson quantum field models, in [[ Str ]], pp. 77–143.

    Google Scholar 

  248. J. Goldstone, R.L. Jaffe: Bound states in twisting tubes, Phys. Rev. B45 (1992), 14100–14107.

    ADS  Google Scholar 

  249. C. Gordon, D.L. Webb, S. Wolpert: One cannot hear the shape of a drum, Bull. Am. Math. Soc. 27 (1992), 134–138.

    MATH  MathSciNet  Google Scholar 

  250. G.M. Graf: Asymptotic completeness for N—body short range quantum sys tems: a new proof, Commun. Math. Phys. 132 (1990), 73–101.

    MATH  ADS  MathSciNet  Google Scholar 

  251. S. Graffi, V. Grecchi: Resonances in Stark effect of atomic systems, Commun. Math. Phys. 79 (1981), 91–110.

    MATH  ADS  MathSciNet  Google Scholar 

  252. M. Griesemer, E.H. Lieb, M. Loss: Ground states in non-relativistic quantum electrodynamics, Invent. Math. 145 (2001), 557–595.

    MATH  ADS  MathSciNet  Google Scholar 

  253. D. Grieser: Spectra of graph neighborhoods and scattering, arXiv:0710.3405v1 [math.SP]

    Google Scholar 

  254. D. Gromoll, W. Meyer, On complete open manifolds of positive curvature, Ann. Math. 90 (1969), 75–90.

    MathSciNet  Google Scholar 

  255. C. Grosche: Coulomb potentials by path integration, Fortschr. Phys. 40 (1992), 695–737.

    MathSciNet  Google Scholar 

  256. H. Grosse: On the level order for Dirac operators, Phys. Lett. B197 (1987), 413–417.

    ADS  MathSciNet  Google Scholar 

  257. S.P. Gudder: The Hilbert space axiom in quantum mechanics, in Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology. Essays in Honor of W. Yourgrau, Plenum Press, New York 1983; pp. 109–127.

    Google Scholar 

  258. R. Haag: Quantum field theory, in the proceedings volume [[ Str ]], pp. 1–16.

    Google Scholar 

  259. R. Haag: On quantum field theories, Danske Vid. Selsk. Mat.—Fys. Medd. 29 (1955), No. 12.

    Google Scholar 

  260. R. Haag: Local relativistic quantum physics, Physica A124(1984), 357–364.

    ADS  MathSciNet  Google Scholar 

  261. R. Haag, D. Kastler: An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.

    MATH  ADS  MathSciNet  Google Scholar 

  262. M. Hack: On the convergence to the Møller wave operators, Nuovo Cimento 9 (1958), 731–733.

    MATH  Google Scholar 

  263. G. Hagedorn: Semiclassical quantum mechanics I—IV, Commun. Math. Phys. 71 (1980), 77–93; Ann. Phys. 135 (1981), 58–70; Ann. Inst. H. Poincaré A42 (1985), 363–374.

    Google Scholar 

  264. G. Hagedorn: Adiabatic expansions near adiabatic crossings, Ann. Phys. 196 (1989), 278–295.

    MATH  ADS  MathSciNet  Google Scholar 

  265. G. Hagedorn, A. Joye: Molecular propagation through small avoided crossings of electron energy levels, Rev. Math. Phys. 11 (1999), 41–101.

    MATH  MathSciNet  Google Scholar 

  266. G. Hagedorn, A. Joye: Time development of exponentially small non-adiabatic transitions, Commun. Math. Phys. 250 (2004), 393–413.

    MATH  ADS  MathSciNet  Google Scholar 

  267. G. Hagedorn, M. Loss, J. Slawny: Non—stochasticity of time—dependent quadratic Hamiltonians and the spectra of transformation, J. Phys. A19 (1986), 521–531.

    ADS  MathSciNet  Google Scholar 

  268. Ch. Hainzl, R. Seiringer: Mass renormalization and energy level shift in non-relativistic QED, Adv. Theor. Math. Phys. 6 (2002), 847–871.

    MathSciNet  Google Scholar 

  269. G.H. Hardy: A note on a Theorem by Hilbert, Math. Z. 6 (1920), 314–317.

    MathSciNet  Google Scholar 

  270. M. Harmer: Hermitian symplectic geometry and extension theory, J. Phys. A33 (2000), 9193–9203.

    ADS  MathSciNet  Google Scholar 

  271. P.G. Harper: Single band motion of conduction electrons in a uniform mag netic field, Proc. Roy. Soc. London A68 (1955), 874–878.

    Google Scholar 

  272. M. Havlíček, P. Exner: Note on the description of an unstable system, Czech. J. Phys. B19 (1973), 594–600.

    Google Scholar 

  273. R. Hempel, L.A. Seco, B. Simon: The essential spectrum of Neumann Lapla- cians on some bounded singular domains, J. Funct. Anal. 102 (1991), 448–483.

    MATH  MathSciNet  Google Scholar 

  274. K. Hepp: The classical limit for quantum correlation function, Commun. Math. Phys. 35 (1974), 265–277.

    ADS  MathSciNet  Google Scholar 

  275. I.W. Herbst: Dilation analycity in constant electric field, I. The two—body problem, Commun. Math. Phys. 64 (1979), 279–298.

    MATH  ADS  MathSciNet  Google Scholar 

  276. I.W. Herbst, J.S. Howland: The Stark ladder resonances and other one—dimen sional external field problems, Commun. Math. Phys. 80 (1981), 23–42.

    MATH  ADS  MathSciNet  Google Scholar 

  277. F. Herbut: Characterization of compatibility, comparability and orthogonality of quantum propositions in terms of chains of filters, J. Phys. A18 (1985), 2901–2907.

    ADS  MathSciNet  Google Scholar 

  278. J. Hilgevoord, J.B.M. Uffink: Overall width, mean peak width and uncertainty principle, Phys. Lett. 95A (1983), 474–476.

    ADS  Google Scholar 

  279. R.N. Hill: Proof that the H- ion has only one bound state, Phys. Rev. Lett. 38 (1977), 643–646.

    ADS  Google Scholar 

  280. F. Hiroshima, H. Spohn: Enhanced binding through coupling to a quantum field, Ann. Henri Poincaré 2 (2001), 1159–1187.

    MATH  MathSciNet  Google Scholar 

  281. G. Hofmann: On the existence of quantum fields in space—time dimension 4, Rep. Math. Phys. 18 (1980), 231–242.

    MATH  MathSciNet  ADS  Google Scholar 

  282. R. Hofstadter: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14 (1976), 2239–2249.

    ADS  Google Scholar 

  283. G. Höhler: Über die Exponentialnäherung beim Teilchenzerfall, Z. Phys. 152 (1958), 546–565.

    MATH  ADS  Google Scholar 

  284. S.S. Horužii, A.V. Voronin: Field algebras do not leave field domains invariant, Commun. Math. Phys. 102 (1986), 687–692.

    ADS  Google Scholar 

  285. L.P. Horwitz, L.C. Biedenharn: Quaternion quantum mechanics: second quan tization and gauge fields, Ann. Phys. 157 (1984), 432–488.

    MATH  ADS  MathSciNet  Google Scholar 

  286. L.P. Horwitz, J.A. LaVita, J.-P. Marchand: The inverse decay problem, J. Math. Phys. 12 (1971), 2537–2543.

    MATH  ADS  MathSciNet  Google Scholar 

  287. L.P. Horwitz, J. Levitan: A soluble model for time dependent perturbation of an unstable quantum system, Phys. Lett. A153 (1991), 413–419.

    ADS  MathSciNet  Google Scholar 

  288. L.P. Horwitz. J.-P. Marchand: The decay-scattering system, Rocky Mts. J. Math. 1 (1971), 225–253.

    MathSciNet  Google Scholar 

  289. L. van Hove: Sur le probleme des relations entre les transformations unitaires de la Mécanique quantique et les transformations canoniques de la Mécanique classique, Bull. Acad. Roy. de Belgique, Classe des Sciences 37 (1951), 610–620.

    Google Scholar 

  290. J.S. Howland: Perturbations of embedded eigenvalues by operators of finite rank, J. Math. Anal. Appl. 23 (1968), 575–584.

    MATH  MathSciNet  Google Scholar 

  291. J.S. Howland: Spectral concentration and virtual poles I, II, Am. J. Math. 91 (1969), 1106–1126; Trans. Am. Math. Soc. 162 (1971), 141–156.

    MATH  MathSciNet  Google Scholar 

  292. J.S. Howland: Puiseaux series for resonances at an embedded eigenvalue, Pacific J. Math. 55 (1974), 157–176.

    MATH  MathSciNet  Google Scholar 

  293. J.S. Howland: The Livsic matrix in perturbation theory, J. Math. Anal. Appl. 50 (1975), 415–437.

    MATH  MathSciNet  Google Scholar 

  294. J.S. Howland: Stationary theory for time—dependent Hamiltonians, Math. Ann. 207 (1974), 315–333.

    MATH  MathSciNet  Google Scholar 

  295. J.S. Howland: Floquet operator with singular spectrum I, II, Ann. Inst. H. Poincarée: Phys.Théor. 49 (1989), 309–323, 325–335.

    MathSciNet  Google Scholar 

  296. J.S. Howland: Stability of quantum oscillators, J. Phys. A25 (1992), 5177–81.

    ADS  MathSciNet  Google Scholar 

  297. D. Hundertmark, E.H. Lieb, L.E. Thomas: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2(1998), 719–731.

    MATH  MathSciNet  Google Scholar 

  298. D. Hundertmark, A. Laptev, T. Weidl: New bounds on the Lieb-Thirring constants, Invent. Math. 140 (2000), 693–704.

    MATH  ADS  MathSciNet  Google Scholar 

  299. W. Hunziker: Resonances, metastable states and exponential decay laws in perturbation theory, Commun. Math. Phys. 132 (1990), 177–188.

    MATH  ADS  MathSciNet  Google Scholar 

  300. T. Ichinose: Path integral for a hyperbolic system of the first order, Duke Math. J. 51 (1984), 1–36.

    MATH  MathSciNet  Google Scholar 

  301. T. Ikebe, T. Kato: Uniqueness of the self—adjoint extension of singular elliptic differential operators, Arch. Rat. Mech. Anal. 9 (1962), 77–92.

    MATH  MathSciNet  Google Scholar 

  302. K. Ito: Wiener integral and Feynman integral, in Proceedings of the 4th Berke ley Symposium on Mathematical Statistics and Probability, vol. 2, University of California Press, Berkeley, CA 1961; pp. 227–238.

    Google Scholar 

  303. K. Ito: Generalized uniform complex measures in the Hilbertian metric space with their applications to the Feynman integral, in Proceedings of the 5th Berke ley Symposium on Mathematical Statistics and Probability, vol.2/1, University of California Press, Berkeley, CA 1967; pp. 145–167.

    Google Scholar 

  304. P.A. Ivert, T. Sjödin: On the impossibility of a finite proposition lattice for quantum mechanics, Helv. Phys. Acta 51 (1978), 635–636.

    MathSciNet  Google Scholar 

  305. J.M. Jauch: Theory of the scattering operator I, II, Helv. Phys.Acta 31 (1958), 127–158, 661–684.

    MATH  MathSciNet  Google Scholar 

  306. J.M. Jauch, C. Piron: Can hidden variables be excluded in quantum mechanics?, Helv. Phys. Acta 36 (1963), 827–837.

    MATH  MathSciNet  Google Scholar 

  307. H. Jauslin, J.L. Lebowitz: Spectral and stability aspects of quantum chaos, Chaos 1 (1991), 114–121.

    MATH  ADS  MathSciNet  Google Scholar 

  308. G.W. Johnson: The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), 2090–2096.

    MATH  ADS  MathSciNet  Google Scholar 

  309. G.W. Johnson: Feynman's paper revisited, Suppl. Rend. Circ. Mat. Palermo, Ser.II, 17 (1987), 249–270.

    Google Scholar 

  310. G.W. Johnson, D.L. Skoug: A Banach algebra of Feynman integrable functions with applications to an integral equation which is formally equivalent to Schrödinger equation, J. Funct. Anal. 12 (1973), 129–152.

    MATH  MathSciNet  Google Scholar 

  311. P. Jordan, J. von Neumann, E. Wigner: On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1934), 29–64.

    Google Scholar 

  312. R. Jost, A. Pais: On the scattering of a particle by a static potential, Phys. Rev. 82 (1951), 840–850.

    MATH  ADS  MathSciNet  Google Scholar 

  313. A. Joye: Proof of the Landau—Zener formula, Asympt. Anal. 9 (1994), 209–258.

    MATH  MathSciNet  Google Scholar 

  314. A. Joye, Ch.-Ed. Pfister: Exponentially small adiabatic invariant for the Schrödinger equation, Commun. Math. Phys. 140 (1991), 15–41.

    MATH  ADS  MathSciNet  Google Scholar 

  315. A. Joye, Ch.—Ed. Pfister: Superadiabatic evolution and adiabatic transition probability between two non—degenerate levels isolated in the spectrum, J. Math. Phys. 34 (1993), 454–479.

    MATH  ADS  MathSciNet  Google Scholar 

  316. M. Kac: On distributions of certain Wiener functionals, Trans. Am. Math. Soc. 65 (1949), 1–13.

    MATH  Google Scholar 

  317. R.V. Kadison: Normal states and unitary equivalence of von Neumann alge bras, in the proceedings volume [[Kas]], pp. 1–18.

    Google Scholar 

  318. B. Karnarski: Generalized Dirac operators with several singularities, J. Oper ator Theory 13 (1985), 171–188.

    MATH  MathSciNet  Google Scholar 

  319. D. Kastler: The C*—algebra of a free boson field, I. Discussion of basic facts, Commun. Math. Phys. 1 (1965), 14–48.

    MATH  ADS  MathSciNet  Google Scholar 

  320. T. Kato: Integration of the equations of evolution in a Banach space, J. Math. Soc. Jpn 5 (1953), 208–234.

    MATH  Google Scholar 

  321. T. Kato: Wave operators and similarity for some non—selfadjoint operators, Math. Ann. 162 (1966), 258–279.

    MATH  MathSciNet  Google Scholar 

  322. T. Kato: Fundamental properties of Hamiltonian of the Schrödinger type, Trans. Am. Math. Soc. 70 (1951), 195–211.

    MATH  Google Scholar 

  323. T. Kato: On the existence of solutions of the helium wave equations, Trans. Am. Math. Soc. 70 (1951), 212–218.

    MATH  Google Scholar 

  324. T. Kato: Growth properties of solutions of the reduced wave equation with variable coefficients, Commun. Pure Appl. Math. 12 (1959), 403–425.

    MATH  Google Scholar 

  325. T. Kato: Perturbations of continuous spectra by trace class operators, Proc.Jpn. Acad. 33 (1057), 260–264.

    Google Scholar 

  326. T. Kato: Positive commutators i[f(P), g(Q)] , J. Funct. Anal. 96 (1991), 117–129.

    MATH  MathSciNet  Google Scholar 

  327. T. Kato, K. Yajima: Dirac equations with moving nuclei,Ann. Inst. H. Poincaré : Phys. Théor. 54 (1991), 209–221.

    MATH  MathSciNet  Google Scholar 

  328. J.C. Khandekar, S.V. Lawande: Feynman path integrals: some exact results and applications, Phys. Rep. 137 (1986), 115–229.

    ADS  MathSciNet  Google Scholar 

  329. A. Kiselev: Some examples in one—dimensional “geometric” scattering on manifolds, J. Math. Anal. Appl. 212 (1997), 263–280.

    MATH  MathSciNet  Google Scholar 

  330. H. Kitada: Asymptotic completeness of N—body operators, I. Short—range systems, Rep. Math. Phys. 3 (1991), 101–124.

    MATH  MathSciNet  Google Scholar 

  331. J.R. Klauder: Continuous—representation theory I, II, J. Math. Phys. 4 (1963), 1055–1058, 1058–1073.

    ADS  MathSciNet  Google Scholar 

  332. J.R. Klauder: The action option and Feynman quantization of spinor fields in terms of ordinary C-numbers, Ann. Phys. 11 (1960), 123–164.

    MATH  ADS  MathSciNet  Google Scholar 

  333. J.R. Klauder, I. Daubechies: Quantum mechanical path integrals with Wiener measure for all polynomial Hamiltonians, Phys. Rev. Lett. 52 (1984), 1161–1164.

    MATH  ADS  MathSciNet  Google Scholar 

  334. M. Klaus: On the bound states of Schrödinger operators in one dimension, Ann. Phys. 108 (1977), 288–300.

    MATH  ADS  MathSciNet  Google Scholar 

  335. M. Klaus: On the point spectrum of Dirac operators, Helv. Phys. Acta 53 (1980), 453–462.

    MathSciNet  Google Scholar 

  336. M. Klaus: Dirac operators with several Coulomb singularities, Helv. Phys. Acta 53 (1980), 463–482.

    MathSciNet  Google Scholar 

  337. M. Klein, E. Schwarz: An elementary proof to formal WKB expansions in Řn , Rep. Math. Phys. 2 (1990), 441–456.

    MATH  MathSciNet  Google Scholar 

  338. V. Kostrykin, R. Schrader: Kirhhoff's rule for quantum wires, J. Phys. A32 (1999), 595–630.

    ADS  MathSciNet  Google Scholar 

  339. V. Kostrykin, R. Schrader: Kirhhoff's rule for quantum wires. II: The in verse problem with possible applications to quantum computers, Fortschr. Phys. 48 (2000), 703–716.

    MATH  MathSciNet  Google Scholar 

  340. V. Kostrykin, R. Schrader: The generalized star product and the factorization of scattering matrices on graphs, J. Math. Phys. 42 (2001), 1563–1598.

    MATH  ADS  MathSciNet  Google Scholar 

  341. V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161–179.

    MATH  ADS  MathSciNet  Google Scholar 

  342. P. Kuchment: Quantum graphs, I. Some basic structures, Waves Rand. Media 14 (2004), S107–128.

    MATH  ADS  MathSciNet  Google Scholar 

  343. P. Kuchment: Quantum graphs, II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A38 (2005), 4887–4900.

    ADS  MathSciNet  Google Scholar 

  344. P. Kuchment, H. Zeng: Convergence of spectra of mesoscopic systems collaps ing onto a grap, J. Math. Anal. Appl. 258 (2001), 671–700.

    MATH  MathSciNet  Google Scholar 

  345. J. Kupsch, W. Sandhas: MØller operators for scattering on singular potentials, Commun. Math. Phys. 2 (1966), 147–154.

    MATH  ADS  MathSciNet  Google Scholar 

  346. S. Kuroda: Perturbations of continuous spectra by unbounded operators I, II, J. Math. Soc. Jpn 11 (1959), 247–262; 12 (1960), 243–257.

    MATH  ADS  Google Scholar 

  347. O.A. LadyŽenskaya, L.D. Faddeev: On perturbations of the continuous spec trum, Doklady Acad. Sci. USSR 120 (1958), 1187–1190 (in Russian).

    Google Scholar 

  348. C. Lance: Tensor products of C*—algebras, in [Kas], pp. 154–166.

    Google Scholar 

  349. R. Landauer: Electrical resistance of disordered one-dimensional lattices, Phil. Mag. 21 (2000), 863–867.

    ADS  Google Scholar 

  350. M.L. Lapidus: The Feynman—Kac formula with a Lebesgue—Stieltjes measure and Feynman operational calculus, Studies Appl. Math. 76 (1987), 93–132.

    MATH  MathSciNet  Google Scholar 

  351. A. Laptev, T. Weidl: Hardy inequalities for magnetic Dirichlet forms, Oper. Theory Adv. Appl. 108 (1999), 299–305.

    MathSciNet  Google Scholar 

  352. A. Laptev, T. Weidl: Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184 (2000), 87–111.

    MATH  MathSciNet  Google Scholar 

  353. G. Lassner: Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279–293.

    MATH  MathSciNet  ADS  Google Scholar 

  354. G. Lassner: Topologien auf Op*—Algebren, Wiss. Z. KMU Leipzig, Math.— Naturwiss. 24 (1975), 465–471.

    MathSciNet  Google Scholar 

  355. G. Lassner: Algebras of unbounded operators and quantum dynamics, Physica A124 (1984), 471–480.

    ADS  MathSciNet  Google Scholar 

  356. G. Lassner, W. Timmermann: Normal states on algebras of unbounded operators, Rep. Math. Phys. 3 (1972), 295–305.

    MATH  MathSciNet  ADS  Google Scholar 

  357. G. Lassner, W. Timmermann: Classification of domains of operator algebras, Rep. Math. Phys. 9 (1976), 205–217.

    MATH  MathSciNet  ADS  Google Scholar 

  358. T.D. Lee: Some special examples in renormalizable field theory, Phys. Rev. 95 (1954), 1329–1334.

    MATH  ADS  Google Scholar 

  359. F. Lenz, J.T. Londergan, R.J. Moniz,R.Rosenfelder, M.Stingl, K.Yazaki: Quark confinement and hadronic interactions, Ann. Phys. 170 (1986), 65–254.

    ADS  Google Scholar 

  360. J.—M. Lévy—Leblond: Galilei group and Galilean invariance, in the proceedings volume [[Loe 2]], pp. 221–299.

    Google Scholar 

  361. J.—M. Lévy—Leblond: Galilean quantum field theories and a ghostless Lee model, Commun. Math. Phys. 4 (1967), 157–176.

    ADS  Google Scholar 

  362. E.H. Lieb: The classical limit of quantum spin systems, Commun. Math. Phys. 31 (1973), 327–340.

    MATH  ADS  MathSciNet  Google Scholar 

  363. E.H. Lieb: Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Am. Math. Soc. 82 (1976), 751–753.

    MATH  MathSciNet  Google Scholar 

  364. E.H. Lieb: The number of bound states of one—body Schrödinger operators and the Weyl problem, Proc. Symp. Pure Math. 36 (1980), 241–252.

    MathSciNet  Google Scholar 

  365. E.H. Lieb: A bound on the maximal ionization of atoms and molecules, Phys. Rev. A29 (1984), 3018–3028.

    ADS  Google Scholar 

  366. E.H. Lieb: The stability of matter, Rev. Mod. Phys. 48 (1976), 553–569.

    ADS  MathSciNet  Google Scholar 

  367. E.H. Lieb: The stability of matter: from atoms to stars, Bull. Am. Math. Soc. 22 (1990), 1–49.

    MATH  MathSciNet  Google Scholar 

  368. E.H. Lieb: A bound on maximum ionization of atoms and molecules, Phys. Rev. A29 (1984), 3018–3028.

    ADS  Google Scholar 

  369. E.H. Lieb, M. Loos: Stability of Coulomb systems with magnetic fields, II. The many—electron atom and the one—electron molecule, Commun. Math. Phys. 104 (1986), 271–282.

    MATH  ADS  Google Scholar 

  370. E.H. Lieb, W. Thirring: Inequalities for the momenta of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev inequalities, in the proceedings volume [[LSW]], pp. 269–304.

    Google Scholar 

  371. E.H. Lieb, I.M. Sigal, B. Simon, W. Thirring: Asymptotic neutrality of large Zions, Phys. Rev. Lett. 52 (1984), 994–996.

    ADS  MathSciNet  Google Scholar 

  372. E.H. Lieb, H.—T. Yau: The stability and instability of the relativistic matter, Commun. Math. Phys. 118 (1988), 177–213.

    MATH  ADS  MathSciNet  Google Scholar 

  373. F. Löffler, W. Timmermann: The Calkin representation for a certain class of algebras of unbounded operators, Rev. Roum. Math. Pures Appl. 31 (1986), 891– 903.

    MATH  Google Scholar 

  374. G. Lüko: On the mean lengths of the chords of a closed curve, Israel J. Math. 4 (1966), 23–32.

    MathSciNet  Google Scholar 

  375. Ph. Martin: Time delay in quantum scattering processes, Acta Phys. Austriaca Suppl. XXIII (1981), 157–208.

    Google Scholar 

  376. K. Maurin: Elementare Bemerkungen öber komutative C*—Algebren. Beweis einer Vermutung von Dirac, Stud. Math. 16 (1957), 74–79.

    MATH  MathSciNet  Google Scholar 

  377. B. Misra, K.B. Sinha: A remark on the rate of regeneration in decay processes, Helv. Phys. Acta 50 (1977), 99–104.

    MathSciNet  Google Scholar 

  378. B. Milek, P. Šeba: Quantum instability in the kicked rotator with rank—one perturbation, Phys. Lett. A151 (1990), 289–294.

    ADS  Google Scholar 

  379. A.M. Molčanov: On conditions of the spectrum discreteness of self—adjoint second—order differential equations, Trudy Mosk. mat. obš čestva 2 (1953), 169–200 (in Russian).

    Google Scholar 

  380. S. Molchanov, B. Vainberg: Scattering solutions in a network of thin fibers: small diameter asymptotics, Commun. Math. Phys. 273 (2007), 533–559.

    MATH  ADS  MathSciNet  Google Scholar 

  381. S. Nakamura: Shape resonances for distortion analytic Schrödinger operators, Commun. PDE 14 (1989), 1385–1419.

    MATH  Google Scholar 

  382. F. Nardini: Exponential decay for the eigenfunctions of the two—body rela-tivistic Hamiltonian, J. d‘Analyse Math. 47 (1986), 87–109.

    MATH  MathSciNet  Google Scholar 

  383. A.H. Nasr: The commutant of a multiplicative operator, J. Math. Phys. 23 (1982), 2268–2270.

    MATH  ADS  MathSciNet  Google Scholar 

  384. L. Nedelec: Sur les résonances de l'opérateur de Dirichlet dans un tube, Comm. PDE 22 (1997), 143–163.

    MATH  MathSciNet  Google Scholar 

  385. E. Nelson: Analytic vectors, Ann. Math. 70 (1959), 572–614.

    Google Scholar 

  386. E. Nelson: Feynman integrals and the Schrödinger equation, J. Math. Phys. 5 (1964), 332–343.

    MATH  ADS  Google Scholar 

  387. E. Nelson: Construction of quantum fields from Markoff fields, J. Funct. Anal. 12(1973), 97–112.

    MATH  Google Scholar 

  388. G. Nenciu: Adiabatic theorem and spectral concentration I, Commun. Math. Phys. 82 (1981), 121–135.

    MATH  ADS  MathSciNet  Google Scholar 

  389. G. Nenciu: Linear adiabatic theory. Exponential estimates, Commun. Math. Phys. 152 (1993), 479–496.

    MATH  ADS  MathSciNet  Google Scholar 

  390. G. Nenciu: Distinguished self—adjoint extension for Dirac operators dominated by multicenter Coulomb potentials, Helv. Phys. Acta 50 (1977), 1–3.

    MathSciNet  Google Scholar 

  391. J. von Neumann: Mathematische Begründung der Quantenmechanik, Nachr. Gessel. Wiss. Göttingen, Math. Phys. (1927), 1–57.

    Google Scholar 

  392. J. von Neumann: Allgemeine Eigenwerttheorie Hermitescher Funktionalopera-toren, Math. Ann. 102 (1930), 49–131.

    MathSciNet  Google Scholar 

  393. J. von Neumann: On infinite direct products, Compos. Math. 6 (1938), 1–77.

    MATH  Google Scholar 

  394. R.G. Newton: Bounds on the number of bound states for the Schrödinger equations in one and two dimensions, J. Operator Theory 10 (1983), 119–125.

    MATH  MathSciNet  Google Scholar 

  395. M.M. Nieto, L.M. Simmons, V.P. Gutschik: Coherent states for general potentials I—VI, Phys. Rev. D20 (1979), 1321–1331, 1332–1341, 1342–1350; D22 (1980), 391–402, 403–418; D23 (1981), 927–933.

    ADS  Google Scholar 

  396. J.U. Nöckel: Resonances in quantum-dot transport, Phys. Rev. B46 (1992), 15348–15356.

    ADS  Google Scholar 

  397. K. Osterwalder: Constructive quantum field theory: goals, methods, results, Helv. Phys. Acta 59 (1986), 220–228.

    MathSciNet  Google Scholar 

  398. K. Osterwalder, R. Schrader: Axioms for Euclidean Green's functions, Commun. Math. Phys. 31 (1973), 83–112; 42 (1975), 281–305.

    MATH  ADS  MathSciNet  Google Scholar 

  399. B.S. Pavlov: A model of a zero—range potential with an internal structure, Teor. mat. fiz. 59 (1984), 345–353 (in Russian).

    Google Scholar 

  400. D.B. Pearson: An example in potential scattering illustrating the breakdown of asymptotic completeness, Commun. Math. Phys. 40 (1975), 125–146.

    ADS  MathSciNet  Google Scholar 

  401. D.B. Pearson: A generalization of Birman's trace theorem, J. Funct. Anal. 28 (1978), 182–186.

    MATH  MathSciNet  Google Scholar 

  402. A.M. Perelomov: Coherent states for arbitrary Lie group, Commun. Math. Phys. 26 (1972), 222–236.

    MATH  ADS  MathSciNet  Google Scholar 

  403. A. Peres: Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996), 1413–1415.

    MATH  ADS  MathSciNet  Google Scholar 

  404. C. Piron: Axiomatique quantique, Helv. Phys. Acta 37 (1964), 439–468.

    MATH  MathSciNet  Google Scholar 

  405. I.Yu. Popov: The extension and the opening in semitransparent surface, J. Math. Phys. 33 (1982), 1685–1689.

    ADS  Google Scholar 

  406. A. Posilicano: Boundary triples and Weyl functions for singular perturbations of self-adjoint operator, Meth. Funct. Anal. Topol. 10 (2004), 57–63.

    MATH  MathSciNet  Google Scholar 

  407. O. Post: Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case, J. Phys. A38 (2005), 4917–4931.

    ADS  MathSciNet  Google Scholar 

  408. O. Post: Spectral convergence of non-compact quasi-one-dimensional spaces, Ann. H. Poincaré 7 (2006), 933–973.

    MATH  MathSciNet  Google Scholar 

  409. R. Powers: Self—adjoint algebras of unbounded operators, Commun. Math. Phys. 21 (1971), 85–124.

    MATH  ADS  MathSciNet  Google Scholar 

  410. J.F. Price: Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711–1714.

    MATH  ADS  MathSciNet  Google Scholar 

  411. J.F. Price: Position versus momentum, Phys. Lett. 105A (1984), 343–345.

    ADS  MathSciNet  Google Scholar 

  412. S. Pulmannová: Uncertainty relations and state spaces, Ann. Inst. H. Poincaré : Phys. Théor. 48 (1988), 325–332.

    MATH  Google Scholar 

  413. J.M. Radcliffe: Some properties of coherent spin states, J. Phys. A4 (1971), 314–323.

    Google Scholar 

  414. F. Rellich: Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der Mathematischen Physik, Math. Z. 49 (1943–44), 702–723.

    MathSciNet  Google Scholar 

  415. W. Renger, W. Bulla: Existence of bound states in quantum waveguides under weak conditions, Lett. Math. Phys. 35 (1995), 1–12.

    MATH  ADS  MathSciNet  Google Scholar 

  416. M. Rosenblum: Perturbations of continuous spectra and unitary equivalence, Pacific J. Math. 7 (1957), 997–1010.

    MATH  MathSciNet  Google Scholar 

  417. G.V. Rozenblium: Discrete spectrum distribution of singular differential operators, Doklady Acad. Sci. USSR 202 (1972), 1012–1015.

    Google Scholar 

  418. J. Rubinstein, M. Schatzmann: Variational problems on multiply connected thin strips, I. Basic estimates and convergence of the Laplacian spectrum, Arch. Rat. Mech. Anal. 160 (2001), 271–308.

    MATH  Google Scholar 

  419. K. Ruedenberg, C.W. Scherr: Free—electron network model for conjugated systems, I. Theory, J. Chem. Phys. 21 (1953), 1565–1581.

    ADS  Google Scholar 

  420. M.B. Ruskai: Absence of discrete spectrum in highly negative ions I, II, Commun. Math. Phys. 82 (1982), 457–469; 85 (1982), 325–327.

    ADS  MathSciNet  Google Scholar 

  421. M.B. Ruskai: Limits of excess negative charge of a dynamic diatomic molecule, Ann. Inst. H. Poincaré: Phys. Théor. 52 (1990), 397–414.

    MATH  MathSciNet  Google Scholar 

  422. M.B. Ruskai: Limits on stability of positive molecular ions, Lett. Math. Phys. 18 (1989), 121–132.

    MATH  ADS  MathSciNet  Google Scholar 

  423. T. Saito: Convergence of the Neumann Laplacian on shrinking domains, Analysis 21 (2001), 171–204.

    MATH  ADS  Google Scholar 

  424. CM. Savage, S. Marksteiner, and P. Zoller. Atomic Waveguides and Cavities from Hollow Optical Fibres. In: Fundamentals of Quantum Optics III (Ed.- F. Ehlotzky), Springer, Lecture Notes in Physics, vol. 420, 1993; p. 60

    ADS  Google Scholar 

  425. K. Schmüdgen: On trace representation of linear functionals on unbounded operator algebras, Commun. Math. Phys. 63 (1978), 113–130.

    MATH  ADS  Google Scholar 

  426. K. Schmudgen: On topologization of unbounded operator algebras, Rep. Math. Phys. 17 (1980), 359–371.

    MathSciNet  ADS  Google Scholar 

  427. E. Schrodinger: Der stetige Übergang von der Mikro—zur Makromechanik, Naturwissenschaften 14 (1926), 664–666.

    ADS  Google Scholar 

  428. R.L. Schult, D.G. Ravenhall, H.W. Wyld: Quantum bound states in a classically unbounded system of crossed wires, Phys. Rev. B39 (1989), 5476–5479.

    ADS  Google Scholar 

  429. J. Schwinger: On the bound states of a given potential, Proc. Natl. Acad. Sci. USA 47 (1961), 122–129.

    ADS  MathSciNet  Google Scholar 

  430. Šeb 1] P. Šeba: Wave chaos in singular quantum billiard, Phys. Rev. Lett. 64 (1990), 1855–1858.

    MATH  ADS  MathSciNet  Google Scholar 

  431. Šeb 2] P. Seba: Complex scaling method for Dirac resonances, Lett. Math. Phys. 16 (1988), 51–59.

    MATH  ADS  MathSciNet  Google Scholar 

  432. P. Šeba: Some remarks on the δ'—interaction in one dimension, Rep. Math. Phys. 24 (1986), 111–120.

    MATH  MathSciNet  ADS  Google Scholar 

  433. P. Šeba: The generalized point interaction in one dimension, Czech. J. Phys. B36 (1986), 667–673.

    ADS  Google Scholar 

  434. L.A. Seco, I.M. Sigal, J.P. Solovej: Bounds on a ionization energy of large atoms, Commun. Math. Phys. 131 (1990), 307–315.

    MATH  ADS  MathSciNet  Google Scholar 

  435. I.E. Segal: Irreducible representations of operator algebras, Bull. Am. Math. Soc. 53 (1947), 73–88.

    MATH  Google Scholar 

  436. I.E. Segal: Postulates for general quantum mechanics, Ann. Math. 48 (1947), 930–948.

    Google Scholar 

  437. I.E. Segal: Mathematical characterization of the physical vacuum for a linear Bose—Einstein field (Foundations of the dynamics of infinite systems III), Illinois Math. J. 6 (1962), 500–523.

    MATH  Google Scholar 

  438. I.E. Segal: Tensor algebras over Hilbert spaces I, Trans. Am. Math. Soc. 81 (1956), 106–134.

    MATH  Google Scholar 

  439. N. Seto: Bargmann inequalities in spaces of arbitrary dimension, Publ. RIMS 9 (1974), 429–461.

    MathSciNet  Google Scholar 

  440. J. Shabani: Finitely many δ—interactions with supports on concentric spheres, J. Math. Phys. 29 (1988), 660–664.

    MATH  ADS  MathSciNet  Google Scholar 

  441. T. Shigehara, H. Mizoguchi, T. Mishima, T. Cheon: Realization of a four parameter family of generalized one-dimensional contact interactions by three nearby delta potentials with renormalized strengths, IEICE Trans. Fund. Elec. Comm. Comp. Sci. E82-A (1999), 1708–1713.

    Google Scholar 

  442. M.A. Shubin: Discrete magnetic Laplacian, Commun. Math. Phys. 164 (1994), 259–275.

    MATH  ADS  MathSciNet  Google Scholar 

  443. I.M. Sigal: On long—range scattering, Duke Math. J. 60 (1990), 473–496.

    MATH  MathSciNet  Google Scholar 

  444. I.M. Sigal, A. Soffer: The N—particle scattering problem: asymptotic completeness for short—range potentials, Ann. Math. 126 (1987), 35–108.

    MathSciNet  Google Scholar 

  445. I.M. Sigal, A. Soffer: Long—range many—body scattering. Asymptotic clustering for Coulomb—type potentials, Invent. Math. 99 (1990), 1155–143.

    MathSciNet  Google Scholar 

  446. B. Simon: Topics in functional analysis, in the proceedings [[Str]], pp. 17–76.

    Google Scholar 

  447. B. Simon: Coupling constant analyticity for the anharmonic oscillator,Ann. Phys.58(1970), 76–136.

    ADS  Google Scholar 

  448. B. Simon: Schrödinger semigroups,Bull. Am. Math. Soc.7(1982), 447–526.

    MATH  ADS  Google Scholar 

  449. B. Simon: Resonances inN—body quantum systems with dilation analytic potentials and the foundations of time—dependent perturbation theory,Ann. Math.97(1973), 247–272.

    Google Scholar 

  450. B. Simon: On the number of bound states of two—body Schrödinger operators—a review, in the proceedings volume [[LSW]], pp. 305–326.

    Google Scholar 

  451. B. Simon: The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys. 97 (1976), 279–288.

    MATH  ADS  Google Scholar 

  452. B. Simon: Phase space analysis of some simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), 119–168.

    MATH  MathSciNet  Google Scholar 

  453. B. Simon: The Neumann Laplacians of a jelly roll, Proc. AMS 114 (1992), 783–785. [SSp 1] B. Simon, T.Spencer: Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys. 125 (1989), 111–125.

    MATH  Google Scholar 

  454. B. Simon, T.Spencer: Trace class perturbations and the absence of absolutely continuous spectra, Commun. Math. Phys. 125 (1989), 111–125.

    ADS  MathSciNet  Google Scholar 

  455. K.B. Sinha: On the decay of an unstable particle, Helv. Phys. Acta 45 (1972), 619–628.

    MathSciNet  Google Scholar 

  456. M. Solomyak: On the spectrum of the Laplacian on regular metric trees, Wave Random Media 14 (2004), S155–S171.

    MATH  ADS  MathSciNet  Google Scholar 

  457. J.P. Solovej: Asymptotic neutrality of diatomic molecules, Commun. Math. Phys. 130 (1990), 185–204.

    MATH  ADS  MathSciNet  Google Scholar 

  458. F. Sols, M. Macucci: Circular bends in electron waveguides, Phys. Rev. B41 (1990), 11887–11891.

    ADS  Google Scholar 

  459. A. Steane: Quantum computing, Rep. Progr. Phys. 61 (1998), 117–173.

    ADS  MathSciNet  Google Scholar 

  460. J. Stubbe: Bounds on the number of bound states for potentials with critical decay at infinity, J. Math. Phys. 31 (1990), 1177–1180.

    MATH  ADS  MathSciNet  Google Scholar 

  461. E.C.G. Stueckelberg, M. Guenin, C. Piron, H. Ruegg: Quantum theory in real Hilbert space I–IV, Helv. Phys. Acta 33 (1960), 727–752; 34 (1961), 621–628, 675–698; 35 (1962), 673–695.

    MATH  MathSciNet  Google Scholar 

  462. M.H. Stone: Linear transformations in Hilbert space, III. Operational methods and group theory, Proc. Nat. Acad. Sci. USA 16 (1930), 172–175.

    MATH  ADS  Google Scholar 

  463. E.C. Svendsen: The effect of submanifolds upon essential self—adjointness and deficiency indices, J. Math. Anal. Appl. 80 (1980), 551–565.

    MathSciNet  Google Scholar 

  464. A. Teta: Quadratic forms for singular perturbations of the Laplacian, Publ. RIMS 26 (1990), 803–817.

    MATH  MathSciNet  Google Scholar 

  465. H. Tilgner: Algebraical comparison of classical and quantum polynomial observables, Int. J. Theor. Phys. 7 (1973), 67–75.

    Google Scholar 

  466. W. Timmermann: Simple properties of some ideals of compact operators in algebras of unbounded operators, Math. Nachr. 90 (1979), 189–196.

    MATH  MathSciNet  Google Scholar 

  467. W. Timmermann: Ideals in algebras of unbounded operators, Math. Nachr. 92 (1979), 99–110.

    MathSciNet  Google Scholar 

  468. G. Timp et al.: Propagation around a bend in a multichannel electron waveguide, Phys. Rev. Lett. 60 (1988), 2081–2084.

    ADS  Google Scholar 

  469. H. Trotter: On the product of semigroups of operators, Proc. Am. Math. Soc. 10. (1959), 545–551.

    MATH  MathSciNet  Google Scholar 

  470. A. Truman: The classical action in nonrelativistic quantum mechanics, J. Math. Phys. 18 (1977), 1499–1509.

    ADS  MathSciNet  Google Scholar 

  471. A. Truman: Feynman path integrals and quantum mechanics as ħ → 0, J. Math. Phys. 17 (1976), 1852–1862.

    ADS  MathSciNet  Google Scholar 

  472. A. Truman: The Feynman maps and the Wiener integral, J. Math. Phys. 19 (1978), 1742–1750; 20 (1979), 1832–1833.

    MATH  ADS  MathSciNet  Google Scholar 

  473. A. Truman: The polynomial path formulation of the Feynman path integrals, in the proceedings volume [[ACH]], pp. 73–102.

    Google Scholar 

  474. J.B.M. Uffink, J. Hilgevoord: Uncertainty principle and uncertainty relations, Found. Phys. 15 (1985), 925–944.

    ADS  MathSciNet  Google Scholar 

  475. J.B.M. Uffink, J. Hilgevoord: New bounds for the uncertainty principle, Phys. Lett. 105A (1984), 176–178.

    ADS  Google Scholar 

  476. A.N. Vasiliev: Algebraic aspects of Wightman axiomatics, Teor. mat. fiz. 3 (1970), 24–56 (in Russian).

    Google Scholar 

  477. A.V. Voronin, V.N. SuŠko, S.S. Horužii: The algebra of unbounded operators and vacuum superselection in quantum field theory, 1. Some properties of Op*algebras and vector states on them, Teor. mat. fiz. 59 (1984), 28–48.

    Google Scholar 

  478. X.–P. Wang: Resonances of N—body Schrodinger operators with Stark effect, Ann. Inst. H. Poincaré: Phys. Théor. 52 (1990), 1–30.

    MATH  Google Scholar 

  479. R.A. Webb et al.: The Aharonov—Bohm effect in normal—metal non—ensemble averaged quantum transport, Physica A140 (1986), 175–182.

    ADS  Google Scholar 

  480. J. Weidmann: The virial theorem and its application to the spectral theory of Schrodinger operators, Bull. Am. Math. Soc. 73 (1967), 452–456.

    MATH  MathSciNet  Google Scholar 

  481. R.F. Werner: Quantum states with Einstein—Podolsky—Rosen correlation admitting a hidden—variable model, Phys. Rev. A40, (1989), 4277–4281.

    ADS  Google Scholar 

  482. G.C. Wick, A.S. Wightman, E.P. Wigner: The intrinsic parity of elementary particles, Phys. Rev. 88 (1952), 101–105.

    ADS  Google Scholar 

  483. G.C. Wick, A.S. Wightman, E.P. Wigner: Superselection rule for charge, Phys. Rev. D1 (1970), 3267–3269.

    ADS  Google Scholar 

  484. A.S. Wightman, L. Gårding: Fields as operator—valued distributions in rela- tivistic quantum theory, Arkiv för Fysik 28 (1964), 129–184.

    Google Scholar 

  485. E.P. Wigner: On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40 (1939), 149–204.

    MathSciNet  Google Scholar 

  486. D.N. Williams: New mathematical proof of the uncertainty relations, Amer. J. Phys. 47 (1979), 606–607.

    ADS  MathSciNet  Google Scholar 

  487. D.N. Williams: Difficulty with a kinematic concept of unstable particles: the Sz.—Nagy extension and Matthews-Salam-Zwanziger representation, Commun. Math. Phys. 21 (1971), 314–333.

    MATH  ADS  Google Scholar 

  488. K.B. Wolf: The Heisenberg—Weyl ring in quantum mechanics, in the proceedings volume [[Loe 3]], pp. 189–247.

    Google Scholar 

  489. M.F.K. Wong: Exact solutions of the n—dimensional Dirac—Coulomb problem, J. Math. Phys. 31 (1991), 1677–1680.

    ADS  Google Scholar 

  490. K. Yajima: Existence of solutions for Schrüdinger equations, Commun. Math. Phys. 110 (1987), 415–426.

    MATH  ADS  MathSciNet  Google Scholar 

  491. K. Yajima: Quantum dynamics of time periodic systems, Physica A124 (1984), 613–620.

    ADS  MathSciNet  Google Scholar 

  492. K. Yajima, H. Kitada: Bound states and scattering states for time periodic Hamiltonians, Ann. Inst. H. Poincaré: Phys. Theor. 39 (1983), 145–157.

    MATH  MathSciNet  Google Scholar 

  493. F.J. Yeadon: Measures on projections in W*—algebras of type II1 , Bull. London Math. Soc. 15 (1983), 139–145.

    MATH  MathSciNet  Google Scholar 

  494. T. Zastawniak: The non-existence of the path measure for the Dirac equation in four space—time dimensions, J. Math. Phys. 30 (1989), 1354–1358.

    MATH  ADS  MathSciNet  Google Scholar 

  495. G.M. Žislin: Discussion of the spectrum of the Schrödinger operator for systems of many particles, Trudy Mosk. mat. obščestva 9 (1960), 81–128.

    Google Scholar 

  496. K. Zyczkowski: Classical and quantum billiards, nonintegrable and pseudointe-grable, Acta Phys. Polon. B23 (1992), 245–269.

    MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2008). Scattering theory. In: Hilbert Space Operators in Quantum Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8870-4_15

Download citation

Publish with us

Policies and ethics