Advertisement

Pulsar Radio Emission Geometry

  • R. T. Gangadhara
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Summary

Pulsar radio emission is belived to come from relativistic plasma accelerated along the dipolar magnetic field lines in pulsar magnetosphere. The beamed emission by relativistic sources occur in the direction of tangents to the field lines in the corotating frame, but in an inertial (lab) frame it is aberrated toward the direction of rotation. To receive such a beamed emission line-of-sight must align with the source velocity within the beaming angle 1/γ, where γ is the Lorentz factor of the source. By solving the viewing geometry, in an inclined and rotating dipole magnetic field, we find the coordinates of the emission region in corotating frame. Next, give a general expression for the phase shift in the intensity profile in lab frame by taking into account of aberration, retardation and polar cap currents.

By considering uniform and modulated emissions, we have simulated a few typical pulse profiles. The circular polarization of antisymmetric type is an intrinsic property of curvature radiation, and it survives only when there is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the polarization angle swing and antisymmetric circular polarization.

Key words

pulsars: general radiation mechanisms: nonthermal stars: magnetic fields geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radhakrishnan, V., Cooke, D. J., 1969, Astrophys. Lett., 3, 225 ADSGoogle Scholar
  2. 2.
    Sturrock, P. A., 1971, ApJ, 164, 229 CrossRefADSGoogle Scholar
  3. 3.
    Ruderman, M. A., & Sutherland, P. G., 1975, ApJ, 196, 51 CrossRefADSGoogle Scholar
  4. 4.
    Lyne, A. G., Manchester, R. N., 1988, MNRAS, 234, 477 ADSGoogle Scholar
  5. 5.
    Blaskiewicz, M., Cordes, J. M., & Wasserman, I., 1991, ApJ, 370, 643 CrossRefADSGoogle Scholar
  6. 6.
    Rankin, J. M., 1983a, ApJ, 274, 333 CrossRefADSGoogle Scholar
  7. 7.
    Rankin, J. M., 1983b, ApJ, 274, 359 CrossRefADSGoogle Scholar
  8. 8.
    Rankin, J. M., 1990, ApJ, 352, 247 CrossRefADSGoogle Scholar
  9. 9.
    Rankin, J. M., 1993, ApJSupp., 85, 145 CrossRefADSGoogle Scholar
  10. 10.
    Hibschman, J. A., Arons, J., 2001, ApJ, 546, 382 CrossRefADSGoogle Scholar
  11. 11.
    Machabeli, G. Z., Rogava, A. D., 1994, Phy. Rev. A, 50, 98 CrossRefADSGoogle Scholar
  12. 12.
    Gangadhara, R. T., 2004, ApJ, 609, 335, (G04) CrossRefADSGoogle Scholar
  13. 13.
    Phillips, J. A., 1992, ApJ, 385, 282 CrossRefADSGoogle Scholar
  14. 14.
    Goldreich, P., Julian, W. H., 1969, ApJ, 157, 869 CrossRefADSGoogle Scholar
  15. 15.
    Jackson, J. D., 1975, Classical Electrodynamics, (NY: Wiley) MATHGoogle Scholar
  16. 16.
    Kramer M., Wielebinski, R., Jessner, A., Gil, J. A. & Seiradakis, J. H., 1994, A&AS, 107, 515 ADSGoogle Scholar
  17. 17.
    Pacini, F., Rees, M. J., 1970, Nat., 226, 622 CrossRefADSGoogle Scholar
  18. 18.
    Gangadhara, R. T., Xilouris, K. M., von Hoensbroech, A., et al. 1999, A&A, 342, 474 ADSGoogle Scholar
  19. 19.
    Michel, F. C., 1987, ApJ, 322, 822 CrossRefADSGoogle Scholar
  20. 20.
    You, X. P., Han, J. L., 2006, Chin. J. Astron. Astrophys., 6, 237 CrossRefADSGoogle Scholar
  21. 21.
    Radhakrishnan, V., Rankin, J. M., 1990, ApJ, 352, 258 CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • R. T. Gangadhara
    • 1
  1. 1.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations