Skip to main content

Summary

We present simulation studies of the formation and dynamics of dark solitons and vortices, and of nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) dense in quantum electron plasmas. The electron dynamics in the latter is governed by a pair of equations comprising the nonlinear Schrödinger and Poisson system of equations, which conserves electrons and their momentum and energy. Nonlinear fluid simulations are carried out to investigate the properties of fully developed two-dimensional (2D) electron fluid turbulence in a dense Fermi (quantum) plasma. We report several distinguished features that have resulted from our 2D computer simulations of the nonlinear equations which govern the dynamics of nonlinearly interacting electron plasma oscillations (EPOs) in the Fermi plasma. We find that a 2D quantum electron plasma exhibits dual cascades, in which the electron number density cascades towards smaller turbulent scales, while the electrostatic potential forms larger scale eddies. The characteristic turbulent spectrum associated with the nonlinear electron plasma oscillations determined critically by quantum tunneling effect. The turbulent transport corresponding to the large-scale potential distribution is predominant in comparison with the small-scale electron number density variation, a result that is consistent with the classical diffusion theory. The dynamics of the CPEM waves is also governed by a nonlinear schrödinger equation, which is nonlinearly coupled with the nonlinear Schrödinger equation of the EPOs via the relativistic ponderomotive force, the relativistic electron mass increase in the CPEM field, and the electron density fluctuations. The present governing equations in one spatial dimension admit stationary solutions in the form a dark envelope soliton. The dynamics of the latter reveals its robustness. Furthermore, we numerically demonstrate the existence of cylindrically symmetric two-dimensional quantum electron vortices, which survive during collisions. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Pines: J. Nucl. Energy: Part C: Plasma Phys. 2, 5 (1961)

    Article  MathSciNet  Google Scholar 

  2. G. Manfredi, F. Haas: Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  3. G. Manfredi: Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  4. P.K. Shukla, B. Eliasson: Phys. Rev. Lett. 96 245001 (2006)

    Article  ADS  Google Scholar 

  5. C.L. Gardner, C. Ringhofer: Phys. Rev. E 53, 157 (1996)

    Article  ADS  Google Scholar 

  6. M. Marklund, G. Brodin: Phys. Rev. Lett. 98, 025001 (2007)

    Article  ADS  Google Scholar 

  7. S.X. Hu, C.H. Keitel: Phys. Rev. Lett. 83, 4709 (1999)

    Article  ADS  Google Scholar 

  8. Y.A. Salamin et al.: Phys. Rep. 427, 41 (2006)

    Article  ADS  Google Scholar 

  9. S.H. Glenzer et al.: Phys. Rev. Lett. 98, 065002 (2007)

    Article  ADS  Google Scholar 

  10. V.M. Malkin et al.: Phys. Rev. E 75, 026404 (2007)

    Article  ADS  Google Scholar 

  11. H. Azechi et al.: Plasma Phys. Control. Fusion 48, B267 (2006)

    Article  Google Scholar 

  12. M. Opher et al.: Phys. Plasmas 8, 2454 (2001)

    Article  ADS  Google Scholar 

  13. O.G. Benvenuto, M.A. De Vito: Mon. Not. R. Astron. Soc. 362, 891 (2005)

    Article  ADS  Google Scholar 

  14. G. Chabrier et al.: J. Phys.: Condens. Matter 14, 9133 (2002)

    Article  ADS  Google Scholar 

  15. G. Chabrier et al.: J. Phys. A: Math. Gen. 39, 4411 (2006)

    Article  ADS  Google Scholar 

  16. Y.Y. Lau et al.: Phys. Rev. Lett. 66, 1446 (1991)

    Article  ADS  Google Scholar 

  17. L.K. Ang et al.: Phys. Rev. Lett. 91, 208303 (2003)

    Article  ADS  Google Scholar 

  18. L.K. Ang, P. Zhang: Phys. Rev. Lett. 98, 164802 (2007)

    Article  ADS  Google Scholar 

  19. E.P. Wigner: Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

  20. M. Hillery et al.: Phys. Rep. 106, 121 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Haas, G. Manfredi, M. Feix: Phys. Rev. E 62, 2763 (2000)

    Article  ADS  Google Scholar 

  22. D. Anderson et al.: Phys. Rev. E 65, 046417 (2002)

    Article  ADS  Google Scholar 

  23. F. Haas, L.G. Garcia, J. Goedert, G. Manfredi: Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  24. F. Haas: Phys. Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  25. G. Mourou et al.: Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  26. A.K. Harding, D. Lai: Rep. Prog. Phys. 69, 2631 (2006)

    Article  ADS  Google Scholar 

  27. G.V. Shpatakovskaya: JETP 102, 466 (2006)

    Article  ADS  Google Scholar 

  28. W.L. Barnes et al.: Nature (London) 424, 824 (2003)

    Article  ADS  Google Scholar 

  29. D.E. Chang et al.: Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  30. P.A. Markowich et al.: Semiconductor Equations (Springer, Berlin 1990)

    MATH  Google Scholar 

  31. K.H. Becker, K.H. Schoenbach, J.G. Eden: J. Phys. D: Appl. Phys. 39, R55 (2006)

    Article  ADS  Google Scholar 

  32. M. Loffredo, L. Morato: Nuovo Cimento Soc. Ital Fis. B 108B, 205 (1993)

    Article  ADS  Google Scholar 

  33. R. Feynman: Statistical Mechanics, A Set of of Lectures (Benjamin, Reading, 1972)

    Google Scholar 

  34. A. Domps et al.: Phys. Rev. Lett. 80, 5520 (1998)

    Article  ADS  Google Scholar 

  35. P. Hohenberg, W. Kohn: Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  36. W. Kohn, L.J. Sham: Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  37. L. Brey et al.: Phys. Rev. B 42, 1240 (1990)

    Article  ADS  Google Scholar 

  38. A.V. Andreev: JETP Lett. 72, 238 (2000)

    Article  ADS  Google Scholar 

  39. M. Marklund, P.K. Shukla: Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  40. P.K. Shukla et al.: Phys. Rep. 138, 1 (1986)

    Article  ADS  Google Scholar 

  41. E.B. Kolomeisky et al.: Phys. Rev. Lett. 85, 1146 (2000)

    Article  ADS  Google Scholar 

  42. I.A. Ivonin, V.P. Pavlenko, H. Persson: Phys. Rev. E 60, 492 (1999)

    Article  ADS  Google Scholar 

  43. D. Shaikh, P.K. Shukla: Phys. Rev. Lett. 99, 125002 (2007)

    Article  ADS  Google Scholar 

  44. M. Marklund, G. Brodin: Phys. Rev. Lett. 98, 025001 (2007)

    Article  ADS  Google Scholar 

  45. D. Gottlieb, S.A. Orszag: Numerical Analysis of Spectral Methods (SIAM, Philadelphia 1977)

    MATH  Google Scholar 

  46. I. Iben Jr., A.V. Tutukov: Astrophys. J. 282, 615 (1984)

    Article  ADS  Google Scholar 

  47. A.N. Kolmogorov: C. R. Acad. Sci. USSR 30, 301 (1941)

    Google Scholar 

  48. M. Lesieur: Turbulence in Fluids (Kluwer, Dordrecht 1990)

    MATH  Google Scholar 

  49. U. Frisch: Turbulence (Cambridge University Press, Cambridge, England 1995)

    MATH  Google Scholar 

  50. P. Iroshnikov: Sov. Astron. 7, 566 (1963)

    ADS  MathSciNet  Google Scholar 

  51. R.H. Kraichnan: Phys. Fluids 8, 1385 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  52. V.D. Larichev, J.C. McWilliams: Phys. Fluids A 3 938 (1991)

    Article  ADS  Google Scholar 

  53. R.K. Scott Phys. Rev. E 75, 046301 (2007)

    Article  ADS  Google Scholar 

  54. P.K. Shukla, B. Eliasson: Phys. Rev. Lett. 99, 096401 (2007)

    Article  ADS  Google Scholar 

  55. C.J. McKinstrie, R. Bingham: Phys. Fluids B 4, 2626 (1992).

    Article  ADS  Google Scholar 

  56. J.H. Marburger, R.F. Tooper: Phys. Rev. Lett. 35, 1001 (1975).

    Article  ADS  Google Scholar 

  57. M. Borghesi et al.: Phys. Rev. Lett. 88, 135002 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. S. Hasan R. T. Gangadhara V. Krishan

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Shukla, P.K., Eliasson, B., Shaikh, D. (2009). Nonlinear Quantum Plasma Physics. In: Hasan, S.S., Gangadhara, R.T., Krishan, V. (eds) Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8868-1_13

Download citation

Publish with us

Policies and ethics