Aspects of Hydrodynamic Turbulence in Classical and Quantum Systems

  • J. J. Niemela
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Summary

Turbulence is a complex phenomenon, characterized by many interacting degrees of spatial and temporal freedom. It is widespread, and indeed nearly the rule, in the flow of classical fluids. The complexity of the underlying equations has impeded analytical progress and therefore direct numerical simulations of the equations, as well as experimental work, are key to making further progress. Here, special attention is given to the role of low temperature helium as a test fluid, including the superfluid phase which also exhibits turbulence.

Key words

Turbulence helium superfluid convection Reynolds number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Tritton, Physical Fluid Dynamics. Clarendon Press, Oxford (1988). Google Scholar
  2. 2.
    G.A. Glatzmaier, R.C. Coe, L. Hongre, P.H. Roberts, Nature 401, 885 (1999). CrossRefADSGoogle Scholar
  3. 3.
    E.M. Spiegel, Ann. Rev. Astron. Astrophys. 9, 323 (1971). CrossRefADSGoogle Scholar
  4. 4.
    B.B. Mandelbrot, Scientific American 280, 50 (1999). CrossRefGoogle Scholar
  5. 5.
    National Research Council Report: Condensed Matter and Materials Physics: Basic Research for Tomorrow’s Technology, 308 pages, National Academy Press (1999). Google Scholar
  6. 6.
    J.J. Niemela and K.R. Sreenivasan, J. Low Temp. Phys. 146, 499-510 (2007). CrossRefADSGoogle Scholar
  7. 7.
    A. Oberbeck, Annalen der Physik und Chemie 7, 271 (1879). CrossRefADSGoogle Scholar
  8. 8.
    M. Van Dyke, An Album of Fluid Motion The Parabolic Press 1982. Google Scholar
  9. 9.
    F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978). CrossRefADSGoogle Scholar
  10. 10.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941). Google Scholar
  11. 11.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2, MIT Press, Cambridge, USA (1975). Google Scholar
  12. 12.
    K.R. Sreenivasan, Phys. Fluids 7, 2778 (1995). MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    U. Frisch, Turbulence (Cambridge University Press, 1995). Google Scholar
  14. 14.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002). CrossRefGoogle Scholar
  15. 15.
    K.R. Sreenivasan, R.J. Donnelly, Adv. Appl. Mech. 37, 239-276 (2001). CrossRefGoogle Scholar
  16. 16.
    J. Nikuradse, NASA TT F-10359 (1966). Translated from the German original Forsch. Arb. Ing.-Wes. No. 356 (1932). Google Scholar
  17. 17.
    C.J. Swanson, B. Julian, G.G. Ihas, R.J. Donnelly, J. Fluid. Mech. 461, 51 (2002). MATHCrossRefADSGoogle Scholar
  18. 18.
    B.J. McKeon, C.J. Swanson, M.V. Zagarola, R.J. Donnelly, A.J. Smits, J. Fluid Mech. 511, 41 (2004). MATHCrossRefADSGoogle Scholar
  19. 19.
    J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Nature 404, 837 (2000). CrossRefADSGoogle Scholar
  20. 20.
    E.M. Sparrow, R.B. Husar, R.J. Goldstein, J. Fluid Mech. 41, 793 (1970). CrossRefADSGoogle Scholar
  21. 21.
    S.A. Theerthan, J.H. Arakeri, J. FLuid Mech. 373, 221 (1998). MATHCrossRefADSGoogle Scholar
  22. 22.
    W.V.R. Malkus, Proc. R. Soc. Lond. A 225, 196 (1954). MATHADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    L.N. Howard, in Proc. 11 th Intern. Cong. Appl. Mech. (ed. H. Gortler), Springer, Berlin, p. 1109 (1966). Google Scholar
  24. 24.
    P. Constantin, C.R. Doering, J. Stat. Phys. 94, 159 (1999). MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R.H. Kraichnan, Phys. Fluids 5, 1374 (1962). CrossRefADSGoogle Scholar
  26. 26.
    P. Roche, B. Castaing, B. Chabaud, B. Hebral, J. Sommeria, Euro. Phys. J. 24, 405 (2001). ADSGoogle Scholar
  27. 27.
    G. Ahlers, Phys. Rev. E. 63, art. no. 015303 (2001). CrossRefADSGoogle Scholar
  28. 28.
    J.J. Niemela, K.R. Sreenivasan, J. Fluid. Mech. 481, 355 (2003). MATHCrossRefADSGoogle Scholar
  29. 29.
    R. Verzicco, J. Fluid Mech. 473, 201 (2002). MATHCrossRefADSGoogle Scholar
  30. 30.
    M.R. Smith, Ph.D. thesis, University of Oregon, Eugene (1992). Google Scholar
  31. 31.
    M.R. Smith, R.J. Donnelly, N. Goldenfeld, W.F. Vinen, Phys. Rev. Lett. 71, 2583 (1993). CrossRefADSGoogle Scholar
  32. 32.
    S.R. Stalp, Ph.D. thesis, University of Oregon, Eugene (1998). Google Scholar
  33. 33.
    J.J. Niemela, R.J. Donnelly, K.R. Sreenivasan, J. Low Temp. Physics 138 537 (2005). CrossRefADSGoogle Scholar
  34. 34.
    C.F. Barenghi, S. Hulton, D.C. Samuels, Phys Rev. Lett. 89 275301 (2002). CrossRefADSGoogle Scholar
  35. 35.
    C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52 189 (1983). CrossRefADSGoogle Scholar
  36. 36.
    S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999). CrossRefADSGoogle Scholar
  37. 37.
    K.R. Sreenivasan, Phys. Fluids 27, 1048 (1984). CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • J. J. Niemela
    • 1
  1. 1.The Abdus Salam International Center for Theoretical PhysicsTriesteItaly

Personalised recommendations