Skip to main content

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 753 Accesses

Summary

Turbulence is a complex phenomenon, characterized by many interacting degrees of spatial and temporal freedom. It is widespread, and indeed nearly the rule, in the flow of classical fluids. The complexity of the underlying equations has impeded analytical progress and therefore direct numerical simulations of the equations, as well as experimental work, are key to making further progress. Here, special attention is given to the role of low temperature helium as a test fluid, including the superfluid phase which also exhibits turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Tritton, Physical Fluid Dynamics. Clarendon Press, Oxford (1988).

    Google Scholar 

  2. G.A. Glatzmaier, R.C. Coe, L. Hongre, P.H. Roberts, Nature 401, 885 (1999).

    Article  ADS  Google Scholar 

  3. E.M. Spiegel, Ann. Rev. Astron. Astrophys. 9, 323 (1971).

    Article  ADS  Google Scholar 

  4. B.B. Mandelbrot, Scientific American 280, 50 (1999).

    Article  Google Scholar 

  5. National Research Council Report: Condensed Matter and Materials Physics: Basic Research for Tomorrow’s Technology, 308 pages, National Academy Press (1999).

    Google Scholar 

  6. J.J. Niemela and K.R. Sreenivasan, J. Low Temp. Phys. 146, 499-510 (2007).

    Article  ADS  Google Scholar 

  7. A. Oberbeck, Annalen der Physik und Chemie 7, 271 (1879).

    Article  ADS  Google Scholar 

  8. M. Van Dyke, An Album of Fluid Motion The Parabolic Press 1982.

    Google Scholar 

  9. F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978).

    Article  ADS  Google Scholar 

  10. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941).

    Google Scholar 

  11. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2, MIT Press, Cambridge, USA (1975).

    Google Scholar 

  12. K.R. Sreenivasan, Phys. Fluids 7, 2778 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. U. Frisch, Turbulence (Cambridge University Press, 1995).

    Google Scholar 

  14. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002).

    Article  Google Scholar 

  15. K.R. Sreenivasan, R.J. Donnelly, Adv. Appl. Mech. 37, 239-276 (2001).

    Article  Google Scholar 

  16. J. Nikuradse, NASA TT F-10359 (1966). Translated from the German original Forsch. Arb. Ing.-Wes. No. 356 (1932).

    Google Scholar 

  17. C.J. Swanson, B. Julian, G.G. Ihas, R.J. Donnelly, J. Fluid. Mech. 461, 51 (2002).

    Article  MATH  ADS  Google Scholar 

  18. B.J. McKeon, C.J. Swanson, M.V. Zagarola, R.J. Donnelly, A.J. Smits, J. Fluid Mech. 511, 41 (2004).

    Article  MATH  ADS  Google Scholar 

  19. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Nature 404, 837 (2000).

    Article  ADS  Google Scholar 

  20. E.M. Sparrow, R.B. Husar, R.J. Goldstein, J. Fluid Mech. 41, 793 (1970).

    Article  ADS  Google Scholar 

  21. S.A. Theerthan, J.H. Arakeri, J. FLuid Mech. 373, 221 (1998).

    Article  MATH  ADS  Google Scholar 

  22. W.V.R. Malkus, Proc. R. Soc. Lond. A 225, 196 (1954).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. L.N. Howard, in Proc. 11 th Intern. Cong. Appl. Mech. (ed. H. Gortler), Springer, Berlin, p. 1109 (1966).

    Google Scholar 

  24. P. Constantin, C.R. Doering, J. Stat. Phys. 94, 159 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  25. R.H. Kraichnan, Phys. Fluids 5, 1374 (1962).

    Article  ADS  Google Scholar 

  26. P. Roche, B. Castaing, B. Chabaud, B. Hebral, J. Sommeria, Euro. Phys. J. 24, 405 (2001).

    ADS  Google Scholar 

  27. G. Ahlers, Phys. Rev. E. 63, art. no. 015303 (2001).

    Article  ADS  Google Scholar 

  28. J.J. Niemela, K.R. Sreenivasan, J. Fluid. Mech. 481, 355 (2003).

    Article  MATH  ADS  Google Scholar 

  29. R. Verzicco, J. Fluid Mech. 473, 201 (2002).

    Article  MATH  ADS  Google Scholar 

  30. M.R. Smith, Ph.D. thesis, University of Oregon, Eugene (1992).

    Google Scholar 

  31. M.R. Smith, R.J. Donnelly, N. Goldenfeld, W.F. Vinen, Phys. Rev. Lett. 71, 2583 (1993).

    Article  ADS  Google Scholar 

  32. S.R. Stalp, Ph.D. thesis, University of Oregon, Eugene (1998).

    Google Scholar 

  33. J.J. Niemela, R.J. Donnelly, K.R. Sreenivasan, J. Low Temp. Physics 138 537 (2005).

    Article  ADS  Google Scholar 

  34. C.F. Barenghi, S. Hulton, D.C. Samuels, Phys Rev. Lett. 89 275301 (2002).

    Article  ADS  Google Scholar 

  35. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52 189 (1983).

    Article  ADS  Google Scholar 

  36. S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999).

    Article  ADS  Google Scholar 

  37. K.R. Sreenivasan, Phys. Fluids 27, 1048 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. S. Hasan R. T. Gangadhara V. Krishan

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Niemela, J.J. (2009). Aspects of Hydrodynamic Turbulence in Classical and Quantum Systems. In: Hasan, S.S., Gangadhara, R.T., Krishan, V. (eds) Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8868-1_1

Download citation

Publish with us

Policies and ethics