Gene Expression Profiling of Microspore Embryogenesis in Brassica napus

Abstract

Isolated microspores from selected cultivars of Brassica napus readily form embryos in culture after mild heat stress treatments (32°C for 1–3 days). Transcript profiling methods were used to identify differentially-expressed genes as well as shifts in metabolism during the early stages of microspore embryogen-esis. Approximately 20,000 expressed sequence tags (ESTs) from cDNA libraries representing freshly-isolated microspores (0 hours) and microspores cultured for 3, 5 or 7 days under embryogenesis-inducing conditions were prepared. In silico analyses of ESTs and semi-quantitative and real time reverse transcription-polymerase chain reaction (RT-PCR) based profiling identified differentially-regulated gene clusters and 16 genes that could be used as specific markers for microspore embryogenesis. These molecular marker genes also were expressed during zygotic embryogenesis, underscoring the common developmental path ways that function during zygotic and gametic embryogenesis. Future studies will focus on characterization of embryogenesis-related genes and development of fluorescently-labeled gene/protein probes to precisely mark and isolate early stages of microspore embryogenesis.

Keywords Embryogenesis microspores transcript profiling Brassica ESTs differentially-expressed genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differ entiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643PubMedCrossRefGoogle Scholar
  2. Binarova P, Hause G, Cenklová V, Cordewener JHG, Van Lookeren Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208CrossRefGoogle Scholar
  3. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, Van Lookeren Campagne MM (2002) Ectopic expres sion of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedCrossRefGoogle Scholar
  4. Boutilier K, Fiers M, Liu C-M, Van der Geest AHM (2005) Biochemical and molecular aspects of haploid embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 73–96CrossRefGoogle Scholar
  5. Chan J, Pauls KP (2007) Brassica napus Rop GTPases and their expression in microspore cultures. Planta 225:469–484PubMedCrossRefGoogle Scholar
  6. Costa S, Shaw P (2007) ‘Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106PubMedCrossRefGoogle Scholar
  7. Custers JBM, Cordewener JHG, Nöllen Y, Dons HJM, Van Lookeren Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271CrossRefGoogle Scholar
  8. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  9. Ferrie AMR (2003) Microspore culture of Brassica species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I, (eds) Doubled haploid production in crop plants. Kluwer, Dordrecht, pp 195–204Google Scholar
  10. Ferrie AMR, Keller WA (1995) Microspore culture for haploid plant production. In: Gamborg OL, Philips GC (eds) Plant cell, tissue and organ culture: fundamental methods. Springer, Berlin, pp 155–164Google Scholar
  11. Fiers M, Hause G, Boutilier K, Casamitjana-Martinez E, Weijers D, Offringa R, Van der Geest L, Van Lookeren Campagne M, Liu CM (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327:37–49PubMedCrossRefGoogle Scholar
  12. Haecker A, Groβ-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic pattern ing in Arabidopsis thaliana. Development 131:657–668PubMedCrossRefGoogle Scholar
  13. Hause G, Hahn H (1998) Cytological characterization of multicellular structures in embryogenic microspore cultures of Brassica napus L. Bot Acta 111:204–211Google Scholar
  14. Hoekstra S, Van Zijderveld MH, Louwerse JD, Heidekamp F, Van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  15. Keller WA, Arnison PG, Cardy BJ (1987) Haploids from gametophytic cells — recent develop ments and future prospects. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R Liss, New York, pp 223–241Google Scholar
  16. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo devel opment in vegetative cells. Cell 93:1195–1205PubMedCrossRefGoogle Scholar
  17. Luerβen H, Kirik V, Herrmann P, Miséra S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed matu ration in Arabidopsis thaliana. Plant J 15:755–764CrossRefGoogle Scholar
  18. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedCrossRefGoogle Scholar
  19. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogen-esis in Brassica napus. Plant Physiol 144:134–154PubMedCrossRefGoogle Scholar
  20. Malik MR, Wang F, Dirpaul JM, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE (2008) Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microscope embryogenesis. J Exp Bot 59:2857–2873PubMedCrossRefGoogle Scholar
  21. Maraschin SF, Lamers GEM, Pater BS, Spaink HP, Wang M (2003) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 54:1033–1043CrossRefGoogle Scholar
  22. Nuccio M, Thomas T (1999) ATS1 and ATS3: two novel embryo-specific genes in Arabidopsis thaliana. Plant Mol Biol 39:1153–1163PubMedCrossRefGoogle Scholar
  23. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844PubMedCrossRefGoogle Scholar
  24. Okita K, Ichisakan T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  25. Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582PubMedCrossRefGoogle Scholar
  26. Pechan PM, Keller WA (1988) Identification of potentially embryogenic microspores of Brassica napus L. Physiol Plant 74:377–384CrossRefGoogle Scholar
  27. Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10PubMedCrossRefGoogle Scholar
  28. Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32:823–829PubMedCrossRefGoogle Scholar
  29. Schulze D, Pauls KP (2002) Flow cytometric analysis of cellulose tracks development of embryo-genic Brassica cells in microspore cultures. New Phytol 154:249–254CrossRefGoogle Scholar
  30. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811PubMedCrossRefGoogle Scholar
  31. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  32. To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651PubMedCrossRefGoogle Scholar
  33. Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress induced microspore embryogen-esis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565CrossRefGoogle Scholar
  34. Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215CrossRefGoogle Scholar
  35. Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652PubMedCrossRefGoogle Scholar
  36. Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463PubMedCrossRefGoogle Scholar
  37. Xiang D, Datla R, Li F, Cutler A, Malik MR, Krochko JE, Sharma N, Fobert P, Georges F, Selvaraj G, Tsang E, Klassen D, Koh C, Deneault J-S, Nantel A, Nowak J, Keller W, Bekkaoui F (2008) Development of a Brassica seed cDNA microarray. Genome 51:236–242PubMedCrossRefGoogle Scholar
  38. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embry onic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Plant Biotechnology Institute, National Research Council of CanadaSaskatoonCanada

Personalised recommendations