Skip to main content

Cell- and tissue culture methods in combination with conventional breeding process were suitable way to produce new varieties. These applications gave new breeding alternatives to release competitive genotypes in comparison with traditional ones. To the breeding of ‘Risabell’ (1997) DH lines were produced via anther culture from F2 population of a single cross combination. The new variety was improved for resistance to blast disease, high milling and cooking quality and long grain type. In case of ‘Janka’ (2003) haploid cell cultures were developed and their vigorous regenerants were colchicine treated. One of the best fertile lines was released as ‘Janka’ has vigorous seedling growth, drought tolerance and good grain quality. The variety ‘Ábel’ (2005) was improved through somatic tissue culture regeneration followed by anther culture. Main characteristics of this variety are earliness, early stage cold tolerance and good performance in aerobic conditions. The breeding-processes of these State approved rice varieties demonstrate the successful integration of biotechnological methods and pedigree-breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afza R, Xie J, Shen M, Zapata Arias FJ, Fundi HK, Lee K, Bobadilla-Mucino E, Kodym A (2001) Detection of androclonal variation in anther-cultured rice lines using rapds. In Vitro Cell Dev Biol Plant 37(5):644–647

    Article  CAS  Google Scholar 

  • Alemanno L, Guiderdoni E (1994) Increased doubled haploid plant regeneration from rice (Oryza sativa L.) anthers cultured on colchicine-supplemented media. Plant Cell Rep 13(8):432–436

    Article  CAS  Google Scholar 

  • Chair H, Legavre T, Guiderdoni E (1996) Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.). Plant Cell Rep 15(10):766–770

    Article  CAS  Google Scholar 

  • Chen CC (1977) In vitro development of plants from microspores of rice. In Vitro Cell Dev Biol Plant 13(8):484–489

    Article  CAS  Google Scholar 

  • Chen QF, Wang CL, Lu YM, Shen M, Afza R, Duren MV, Brunner H (2001) Anther culture in connection with induced mutations for rice improvement. Euphytica 120:401–408

    Article  Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of Symposium on Plant Tissue Culture. May 25–30, 1978, Science Press, Peking, pp. 43–50

    Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Pi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Cistué L, Vallés MP, Echàvarri B, Sanz M, Castillo AM (2004) Production of barley doubled haploids by anther and microspore culture. In: Munjib A, Cho MJ, Predieri S, Banerjee S (eds) In Vitro Application in Crop Improvement. Science Publishers, Enfield, pp. 1–17

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Guha S (1973) Genotipic differences in the in vitro formation of embryoids from rice pollen. J Exp Bot 24:139–144

    Article  Google Scholar 

  • Guha S, Iyer RD, Gupta N, Swaminathan MS (1970) Totipotency of gametic cells and the production of haploids in rice. Curr Sci 39:174–176

    Google Scholar 

  • Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica x indica hybrids of rice (Oryza sativa L.). Euphytica 62(3):219–224

    Article  Google Scholar 

  • Harn D (1969) Studies on the another culture of rice. Korean J Breed 1:1–11

    Google Scholar 

  • Heszky LE, Li SN, Simon-Kiss I, Lökös K, Gyulai G, Kiss E (1989) Organ-specific and ploidy-dependent somaclonal variation; a new tool in breeding. Acta Biol Hung 40(4):381–394

    PubMed  CAS  Google Scholar 

  • Heszky L, Pauk J (1975) Induction of haploid rice plants of different origin in anther culture. Il Riso 24(3):197–204

    Google Scholar 

  • Heszky LE, Simon-Kiss I, Do Quangh B (1996) Release of rice variety ‘DAMA’ developed trough haploid somaclone breeding. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Volume 36 Somaclonal variation in Crop Improvement II. Springer Verlag, Berlin/Heidelberg/ New York, pp. 46–54

    Google Scholar 

  • Hu H, Zeng JZ (1984) Development of new varieties via anther culture. In: Ammirato P V, Evans DA, Sharp WR, Yamada Y (eds) Handbook of Plant Cell Culture, Volume 3. Macmillan, New York, pp. 65–90

    Google Scholar 

  • Hu H (1985) Use of haploids in crop improvement. In: Biotechnology in International Agricultural Research. Proceedings of Inter-Seminar IARC's and Biotech. International Rice Research Institute College, Laguna, Philippines, pp. 763–772

    Google Scholar 

  • Khush GS, Virmani SS (1996) Haploids in plant breeding. In: Jain MS, Sopory SK, Veilleux RE (eds) In Vitro Haploid Production in Higher Plants. Volume 1: Fundamental Aspects and Methods. Kluwer, Dordrecht, The Netherlands, pp. 11–33

    Google Scholar 

  • Lapitan VC, Cayaban, EB, Roferos LT, San Valentin GO, Sebastian LS (2004) Utilization of anther culture technique for rice improvement in the Philippines. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd D (eds) New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 Sept–1 Oct 2004, Published on CDROM

    Google Scholar 

  • Lee JH, Lee SY (2002) Selection of sable mutants from cultured rice anthers treated with ethyl methane sulfonic acid. Plant Cell Tiss Org Cult 71(2):165–171

    Article  CAS  Google Scholar 

  • Lee S Y, Lee JH, Kwon TO (2003) Selection of salt-tolerant doubled haploids in rice anther culture. Plant Cell Tiss Org Cult 74(2):143–149

    Article  CAS  Google Scholar 

  • Lentini Z, Reyes ZP, Martinez CP, Roca WM (1995) Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci 110:127–138

    Article  CAS  Google Scholar 

  • Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N (1997) Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94(1):39–45

    Article  CAS  Google Scholar 

  • Miller CO (1953) Reversible inhibition of cell division and enlargement in plant tissue by 2,6-diaminopurine. Proc Soc Expt Biol Med 83:561–565

    CAS  Google Scholar 

  • Niizeki H, Oono K (1968) Induction of haploid rice plants from anther culture. Proc Jpn Acad 44:544–557

    Google Scholar 

  • Niizeki H, Oono K (1971) Rice plants obtained by anther culture. Les Cultures de Tissus des Plantes. Colloq Int CNRS (Paris) 193:251–257

    Google Scholar 

  • Nishi T, Mitsuoka S (1969) Occurrence of various ploidy plants from anther and culture of rice plant. Jpn J Genet 44:341–346

    Article  Google Scholar 

  • Reiffers I, Freire AB (1990) Production of doubled haploid rice plants (Oryza sativa L.) by anther culture. Plant Cell Tiss Org Cult 21(2):165–170

    Article  Google Scholar 

  • Swaminathan MS (1986) Plant research and world agriculture. Plant Mol Biol Rep 4(1):1–17

    Article  Google Scholar 

  • Thomas WTB, Forster BP, Gertsson B (2003) Doubled haploids in breeding. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants: A Manual. Kluwer, Dordrecht, The Netherlands, pp. 337–349

    Google Scholar 

  • Woo SC, Tung IJ (1972) Induction of rice plants from hybrid anthers of indica and japonica cross. Bot Bull Acad Sin 16:19–24

    Google Scholar 

  • Yin KC, Hsu C, Chu CY, Pi FY, Wang ST, Liu TY, Chu CC, Wang CC, Sun CS (1976) A study of the new cultivar of rice raised by haploid breeding method. Sci Sin 19:227–242

    Google Scholar 

  • Zapata FJ, Torrizo L, Romero RD, Alejar MS (1982) Androgenesis in Oryza sativa. In: Fujiwara A (ed) Plant Tissue Culture. Maruzen, Tokyo, pp. 531–532

    Google Scholar 

  • Zapata-Arias FJ (2003) Laboratory protocol for anther culture technique in rice. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants: A Manual. Kluwer, Dordrecht, The Netherlands, pp. 109–116

    Google Scholar 

  • Zhang ZH (1982) Application of anther culture techniques to rice breeding. In: Proceedings on Rice Tissue Culture Planning Conference. IRRI, Los Banos, pp. 55–61

    Google Scholar 

  • Zhu D, Pan X, Liu W (1986) Developing high quality rice via anther culture of hybrid rice. In: Abstract of the 6th International Congress on Plant Tissue and Cell Culture, Minnesota, p. 413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pauk, J., Jancsó, M., Simon-Kiss, I. (2009). Rice Doubled Haploids and Breeding. In: Touraev, A., Forster, B.P., Jain, S.M. (eds) Advances in Haploid Production in Higher Plants. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8854-4_16

Download citation

Publish with us

Policies and ethics