Ft-Ir Product Study On The Oh Radical Initiated Oxidation Of Dimethyl Sulfide: Temperature And O2 Partial Pressure Dependence

  • M. Albu
  • I. Barnes
  • K. H. Becker
  • I. Patroescu-Klotz
  • Th. Benter
  • R. Mocanu
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

The products of the OH radical initiated oxidation of dimethyl sulfide (DMS) have been investigated under NOx-free conditions using the photolysis of H2O2 as the OH radical source and FT-IR spectroscopy to monitor reactants and products. The experiments were performed at five different temperatures (260, 270, 280, 290 and 298 K), at three different O2 partial pressure (̃0, 205 and 500 mbar) and at a total pressure of 1,000 mbar diluent gas (N2, synthetic air or N2/O2 mixture). The major sulfur-containing products were dimethyl sulfoxide (DMSO) and sulfur dioxide (SOM2). As minor sulfur-containing products dimethyl sulfone (DMSO2), methyl thiol formate (MTF) and carbonyl sulfide (OCS) have been identified; the formation of trace amounts of methane sulfonic acid (MSA) were also observed. The variation of the product yields with temperature and O2 partial pressure is consistent with the occurrence of both addition and abstraction channels in the OH radical initiated oxidation of DMS. The molar formation yields of DMSO support that a major fraction of the DMS-OH adduct formed in the addition channel reacts with O2 to form DMSO.

Keywords

Dimethyl sulfide hydroxyl radical marine atmosphere photooxidation products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albu, M., Barnes, I., Becker, K.H., Patroescu-Klotz, I., Mocanu, R., and Benter, Th., 2006a, Rate coefficients for the gas-phase reaction of OH radicals with dimethyl sulfide: temperature and O2 partial pressure dependence, Phys. Chem. Chem. Phys. 8, 728 – 736.CrossRefGoogle Scholar
  2. Albu, M., Barnes, I., and Mocanu, R., 2006b, Kinetic study of the temperature dependence of the OH initiated oxidation of dimethyl sulfide, in: Proceedings of the NATO Advanced Research Workshop on Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, Zakoppane, Poland, 1 – 4 October 2004, I. Barnes and K.J. Rudzinski, eds., NATO Science Series IV: Earth and Environmental Sciences — Vol. 62, Springer, Dordrecht pp. 223 – 230.Google Scholar
  3. Arsene, C., Barnes, I., and Becker, K.H., 1999, FT-IR product study on the photo-oxidation of dimethyl sulphide: temperature and O2 partial pressure dependence, Phys. Chem. Chem. Phys. 1, 5463 – 5470.CrossRefGoogle Scholar
  4. Arsene, C., Barnes, I., Becker, K.H., and Mocanu, R., 2001, FT-IR product study on the photo-oxidation of dimethyl sulphide in the presence of NOx — temperature dependence, Atmos. Environ. 35, 3769 – 3780.CrossRefGoogle Scholar
  5. Arsene, C., Barnes, I., Becker, K.H., Schneider, W.F., Wallington, T.J., Mihalopoulos, N., and Patroescu-Klotz, I.V., 2002, Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide, Environ. Sci. Technol. 36, 5155 – 5163.CrossRefGoogle Scholar
  6. Barnes, I., Becker, K.H., Fink, E.H., Reimer, A., Zabel, F., and Niki, H., 1983, Rate constant and products of the reaction CS2 + OH in the presence of O2, Int. J. Chem. Kinet. 15, 631 – 645.CrossRefGoogle Scholar
  7. Barnes, I., Bastian, V., and Becker, K.H., 1988, Kinetics and mechanisms of the reaction of OH radicals with dimethyl sulphide, Int. J. Chem. Kinet. 20 (6), 415 – 431.CrossRefGoogle Scholar
  8. Barnes, I., Becker, K.H., and Patroescu, I., 1994, The tropospheric oxidation of dimethyl sulfide: a new source of carbonyl sulphide, Geophys. Res. Lett. 21 (22), 2389 – 2392.CrossRefGoogle Scholar
  9. Barnes, I., Becker, K.H., and Patroescu, I., 1996, FTIR product study of the OH initiated oxidation of dimethyl sulphide: observation of carbonyl sulphide and dimethyl sulphoxide, Atmos. Environ. 30 (10/11), 1805 – 1814.CrossRefGoogle Scholar
  10. Barnes, I., Hjorth, J., and Mihalopoulos, N., 2006, Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere, Chem. Rev. 106 (3), 940 – 975.CrossRefGoogle Scholar
  11. Becker, K.H., Nelsen, W., Su, Y., and Wirtz, K., 1990, A new mechanism for the reaction CS2 + OH, Chem. Phys. Lett. 168 (6), 559 – 563.CrossRefGoogle Scholar
  12. Berresheim, H., Wine, P.H., and Davis, D.D., 1995, Sulphur in the atmosphere, in: Composition, Chemistry, and Climate of the Atmosphere, H.B. Singh, ed., Van Nostrand Reinhold, New York, pp. 251 – 307.Google Scholar
  13. Charlson, R.J., Lovelock, J.E., Andreae, M.O., and Warren, S.G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature 326, 655 – 661.CrossRefGoogle Scholar
  14. Hynes, A.J., Wine, P.H., and Semmes, D.H., 1986, Kinetics and mechanism of OH reactions with organic sulphides, J. Phys. Chem. 90, 4148 – 4156.CrossRefGoogle Scholar
  15. Kukui, A., Borissenko, D., Laverdet, G., and LeBras, G., 2003, Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry, J. Phys. Chem. A 107 (30), 5732 – 5742.CrossRefGoogle Scholar
  16. Librando, V., Tringali, G., Hjorth, J., and Coluccia, S., 2004, OH-initiated oxidation of DMS/DMSO: reaction products at high NOx levels, Environ. Poll. 127, 403 – 410.CrossRefGoogle Scholar
  17. Niki, H., Maker, P.D., Savage, C.M., and Breitenbach, L.P., 1983a, An FTIR study of the mechanism for the reaction HO + CH3SCH3, Int. J. Chem. Kinet. 15, 647 – 654.CrossRefGoogle Scholar
  18. Niki, H., Maker, P.D., Savage, C.M., and Breitenbach, L.P., 1983b, Spectroscopic and photochemical properties of CH3SNO, J. Phys. Chem. 87 (1), 7 – 9.CrossRefGoogle Scholar
  19. Patroescu, I.V., Barnes, I., and Becker, K.H., 1996, FTIR kinetic and mechanistic study of the atmospheric chemistry of methyl thiolformate, J. Phys. Chem. 100 (43), 17,207 – 17,217.CrossRefGoogle Scholar
  20. Patroescu, I.V., Barnes, I., Becker, K.H., and Mihalopoulos, N., 1999, FT-IR product study of the OH-initiated oxidation of DMS in the presence of NOx, Atmos. Environ. 33, 25 – 35.CrossRefGoogle Scholar
  21. Sørensen, S., Falbe-Hansen, H., Mangoni, M., Hjorth, J., and Jensen, N.R., 1996, Observation of DMSO and CH3S(O)OH from the gas phase reaction between DMS and OH, J. Atmos. Chem. 24, 299 – 315.CrossRefGoogle Scholar
  22. Tuazon, E.C., MacLeod, H., Atkinson, R., and Carter, W.P.L., 1986, α -Dicarbonyl yields from the NOx-air photooxidations of a series of aromatic hydrocarbons in air, Environ. Sci. Technol. 20, 383 – 387, 1986CrossRefGoogle Scholar
  23. Turnipseed, A.A., Barone, S.B., and Ravishankara, A.R., 1996, Reaction of OH with dimethyl sulphide. 2. Products and mechanisms, J. Phys. Chem. 100 (35), 14,703 – 14,713.CrossRefGoogle Scholar
  24. Urbanski, S.P. and Wine, P.H., 1999, Chemistry of gas phase organic sulfur-centred radicals, in: S-Centred Radicals, Z.B. Alfassi, ed., Wiley, New Jersey, pp. 97 – 140.Google Scholar
  25. Urbanski, S.P., Stickel, R.E., Zhao, Z., and Wine, P.H., 1997, Mechanistic and kinetic study of formaldehyde production in the atmospheric oxidation of dimethyl sulfide, J. Chem. Soc., Faraday Trans. 93 (16), 2813 – 2819.CrossRefGoogle Scholar
  26. Urbanski, S.P., Stickel, R.E., and Wine, P.H., 1998, Mechanistic and kinetic study of the gas-phase reaction of hydroxyl radical with dimethyl sulfoxide, J. Phys. Chem. A 102 (51), 10,522 – 10,529.CrossRefGoogle Scholar
  27. Williams, M.B., Campuzano-Jost, P., Bauer, D., and Hynes, A.J., 2001, Kinetic and mechanistic studies of the OH-initiated oxidation of dimethylsulfide at low temperature — a reevaluation of the rate coefficient and branching ratio, Chem. Phys. Lett. 344, 61 – 67.CrossRefGoogle Scholar
  28. Williams, M.B., Campuzano-Jost, P., Cossairt, B.M., Hynes, A.J., and Pounds, A.J., 2007, Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 1. direct observations of the formation of the OH-DMS adduct-pressure dependence of the forward rate of addition and development of a predictive expression at low temperature, J. Phys. Chem. A 111, 89 – 104.CrossRefGoogle Scholar
  29. Yin, F., Grosjean, D., and Seinfeld, J.H., 1990a, Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem. 11 (4), 309 – 364.CrossRefGoogle Scholar
  30. Yin, F., Grosjean, D., Flagan, R.C., and Seinfeld, J.H., 1990b, Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation, J. Atmos. Chem. 11 (4), 365 – 399.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • M. Albu
    • 1
  • I. Barnes
    • 1
  • K. H. Becker
    • 1
  • I. Patroescu-Klotz
    • 1
  • Th. Benter
    • 1
  • R. Mocanu
    • 2
  1. 1.Physikalische Chemie/FB CBergische Universitä t WuppertalWuppertalGermany
  2. 2.Department of Analytical Chemistry“Al.I. Cuza” University of Iasi, Faculty of ChemistryIasiRomania

Personalised recommendations