Skip to main content

Theoretical Determinations Of Reaction Parameters For Atmospheric Chemical Reactions

  • Conference paper
  • 1356 Accesses

The most common methods for estimating rate constants for elementary and complex atmospheric chemical reactions are presented. The presented methods are categorized into dynamical, statistical-dynamical and statistical methods. The type of information about the system that is needed in order to estimate the rate constant is discussed. The bottleneck in these methods is the accuracy of the potential energy surface/reaction path. This problem is discussed and recommendations of methods are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo, C., and V. Barone, 1998, Exchange functional with improved long-long behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem. Phys., 108, 664–675.

    Article  CAS  Google Scholar 

  • Andersson-Sköld, Y., and D. Simpson, 1997, Comparison of the chemical schemes of the EMEP MSC-W and the IVL photochemical trajectory models, EMEP MSC-W Note 1/97.

    Google Scholar 

  • Anderson, S. M., F. S. Klein, and F. Kaufman, 1985, Kinetics of the isotopic exchange reaction of 18O with NO and O2 at 298 K, J. Chem. Phys., 83, 1648–1656.

    Article  CAS  Google Scholar 

  • Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, 2004, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I — gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738.

    CAS  Google Scholar 

  • Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and IUPAC Subcommittee, 2006, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II — gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055.

    CAS  Google Scholar 

  • Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, 2007, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III — gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191.

    Article  CAS  Google Scholar 

  • Barckholtz, C., T. A. Barckholtz, and C. M. Hadad, 2001, A mechanistic study of the reactions of H, O(3P), and OH with monocyclic aromatic hydrocarbons by density functional theory, J. Phys. Chem. A, 105, 140–152.

    Article  CAS  Google Scholar 

  • Becke, J., 1997, Density-functional thermochemistry. V. Systematic optimisation of exchange-correlation functionals, J. Chem. Phys., 107, 8554–8560.

    Article  CAS  Google Scholar 

  • Billing, G. D., and K. V. Mikkelsen, 1997, Advanced Molecular Dynamics and Chemical Kinetics, Wiley, New York.

    Google Scholar 

  • Brennen, W., and H. Niki, 1965, On the exchange reaction 16O+18O2, J. Chem. Phys., 42, 3725–3726.

    Article  CAS  Google Scholar 

  • Carter, W. P. L., 2000, Programs and files implementing the SAPRC-99 mechanism and its associates emissions processing procedures for Models-3 and other regional models. http://pah.cert.ycr.edu/carter/ SAPRAC99.htm.

  • Choi, Y. M., and M. C. Lin, 2005, Kinetics and mechanisms for reactions of HNO with CH3 and C6H5 studied by quantum-chemical and statistical-theory calculations, Int. J. Chem. Kinet., 37(5), 261–274.

    Article  CAS  Google Scholar 

  • Curtiss L. A., K. Raghavachari, G. W. Trucks, and J. A. Pople, 1991, Gaussian-2 theory for molecular energies of first- and second row compounds, J. Chem. Phys., 94, 7221–7230.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., and J. N. Pitts Jr., 2000, Chemistry of the Upper and Lower Atmosphere Chemistry, Academic, San Diego, CA.

    Google Scholar 

  • Frish, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseriea, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Pettersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, Z. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Comprets, J. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A Voth, P. Salvoador, J. J. Danneberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malich, A. D. Rabuch, K. Raghavachari, J. B. Foresman, J. V, Ortiz, Q, Cui, A. G. Boul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanyakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, and C. Gonzalex, J. A. Pople, 2004, Gaussian 03, Gaussian, Wallingford, CT.

    Google Scholar 

  • Galano, A., 2006, Theoretical study on the reaction of tropospheric interest: Hydroxyacetone + OH. Mechanism and kinetics, J. Phys. Chem., 110, 9153–9160. Gery, M. W., G. Z. Whitten, J. P. Killus and M. C. Dodge, 1989, A photochemical kinetics mechanism for urban and regional scale computer modelling, J. Geophys. Res., 94, 925–956.

    CAS  Google Scholar 

  • Gross, A., and G. D. Billing, 1993, Rate constants for ozone formation and for the isotopic exchange reactions, Chem. Phys., 173, 393–406.

    Article  CAS  Google Scholar 

  • Gross A., and G. D. Billing, 1997, Isotope effects on the rate constants for the processes O2 + O → O + O2 and O2 + O + Ar → O3 +Ar: On a modified ground state potential energy surface for ozone, Chem. Phys., 217, 1–18.

    Article  CAS  Google Scholar 

  • Gross, A, K. V. Mikkelsen and W. R. Stockwell, 2001a, A phase-phase method for arbitrary bimolecular gas-phase reactions: theoretical description, Int. J. Quantum. Mech., 84, 479–492.

    Article  CAS  Google Scholar 

  • Gross, A, K. V. Mikkelsen, and W. R. Stockwell, 2001b, A phase-phase method for arbitrary bimolecular gas-phase reactions: application to the CH3CHO+HO and CH3OOH+HO reactions, Int. J. Quantum. Mech., 84, 493–512.

    Article  CAS  Google Scholar 

  • Gross, A., I. Barnes, R. M. Sørensen, J. Kongsted, and K. V. Mikkelsen, 2004, A theoretical study of the reaction between DMSOH and O2, J. Phys. Chem. A, 108(41), 8659–8671.

    Article  CAS  Google Scholar 

  • Jensen, F., 1999, Introduction to Computational Chemistry, Wiley, New York.

    Google Scholar 

  • Jørgensen, S., M. L. M Grage, G. Nymann, and M. S. Johnson, 2008, Isotope Effects in Photolysis: Advances and Implications for Atmospheres, Advanced in Quantum Chemistry; Special issue on Application of Theoretical Methods to Atmospheric science (Accepted).

    Google Scholar 

  • Kirchner, F., and W. R. Stockwell, 1996, Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101, 21007–21022.

    Article  CAS  Google Scholar 

  • Lasorne, B., M. A. Robb, and G. A. Worth, 2007, Direct quantum dynamics using variational multi-configuration Gaussian wavepacket. Implementation details and test case, Phys. Chem. Chem. Phys., 9, 3210–3227.

    Article  CAS  Google Scholar 

  • Lee, C., W. Yang, and R. G. Parr, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785–789.

    Article  CAS  Google Scholar 

  • Lesar, A., M. Hodoscek, E. Drougas, and A. M. Kosmas, 2006, Quantum mechanical investigation of the atmospheric reaction CH3O2+NO, J. Phys. Chem. A, 110, 7898–7903.

    Article  CAS  Google Scholar 

  • Lin, S. Y., and Guo, H., 2006, Quantum statistical study of O+O2 isotopic exchange reactions: Cross sections and rate constants, J. Phys. Chem. A, 110, 5305–5311.

    Article  CAS  Google Scholar 

  • Madronich, S., and J. G. Calvert, 1990, Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95(D5), 5697–5715.

    Article  CAS  Google Scholar 

  • Mora-Diez, N., J. R. Alvarez-Idaboy, and R. J. Boyd, 2001, A quantum chemical TST study of the oh hydrogen-abstraction reaction from substituted aldehydes: FCHO and ClCHO, J. Phys. Chem., 105, 9034–9039.

    CAS  Google Scholar 

  • Ochando-Pardo, M., I. Nebot-Gil, A. González-Lafont, and J. M. Lluch, 2004, Rate constants for the hydrogen abstractions in the OH-initiated oxidation of glycoaldehyde. A variational transition-state calculation, J. Phys. Chem. A, 108, 5117–5125.

    Article  CAS  Google Scholar 

  • Montgomery J. A., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, 2000, A complete basis set model chemistry. VII. Use of minimum population localization method, J. Chem. Phys., 112, 6532–6542.

    Article  CAS  Google Scholar 

  • Perdew, J. P, K. Burke, and M. Ernzerhof, 1997, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865–3868.

    Article  Google Scholar 

  • Sander, S. P., R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, P. H. Wine, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, R. E. Huie, and V. L. Orkin, 2006, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15. JPL Publication, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Siebert, R., R. Schinke, and M. Bittererova, 2001, Spectroscopy of ozone at the dissociation threshold: Quantum calculations of bound and resonance states on a new global potential energy surface, Phys. Chem. Chem. Phys., 3, 1795–1798.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., and S. N. Pandis, 1997, Atmospheric Chemistry and Physics. From Air Pollution to Climate Change, Wiley, New York.

    Google Scholar 

  • Simpson, D., K. Olendrzynski, A. Semb, E. Støren, and S. Unger, 1997, Photochemical oxidant modelling in Europe: multi-annual modelling and source-receptor relationships, EMEP MSC-W Report 3/97.

    Google Scholar 

  • Schinke, R., R. Y. Grebenshchikov, M. V. Ivanov, and P. Fleurat/Lessard, 2006, Dynamical studies of the ozone isotope effect: A status report, Annu. Rev. Chem., 57, 625–661.

    Article  CAS  Google Scholar 

  • Shepard, M. G, and R. B. Walker, 1983, Wigner method studies of ozone photo-dissociation, J. Chem. Phys., 78, 7191–7199.

    Article  Google Scholar 

  • Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld, 1997, A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102, 25847–25879.

    Article  CAS  Google Scholar 

  • Taghikhani, M., and G. A. Parsafar, 2007, Theoretical investigation of the hydrogen abstraction reaction of the OH radical with CH2FCH2F (HFC-152): A dual-level direct dynamics study. J. Phys. Chem. A., 111, 8095–8103.

    Article  CAS  Google Scholar 

  • Warneck, P., 1988, Chemistry of the Natural Atmosphere, Academic, San Diego, CA.

    Google Scholar 

  • Wayne, R. P., I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli, and H. Sidebottom, 1991, The nitrate radical: physics, chemistry, and the atmosphere, Atm. Env., 25A(1), 1–203.

    CAS  Google Scholar 

  • Wu, J., J. Liu, Z. Li, and C. Sun, 2004, Theoretical study of the reactions of CF3OCHF2 with the hydroxyl radical and chlorine atom, Chem. Phys. Chem., 5(9), 1336–1344.

    CAS  Google Scholar 

  • Wu, T, H. -J. Werner, and U. Manthe, 2006, Accurate potential energy surface and quantum reaction rate calculations for the H + CH4 → H 2 + CH3 reaction, J. Chem. Phys., 124, 164307, doi:10.1063/1.2189223.

    Article  CAS  Google Scholar 

  • Yamashita, K., K. Morokuma, F. Le Quere, and C. Leforestier, 1992, New Ab initio potential energy surfaces and 3-dimensional quantum dynamics for transition state spectroscopy in oxone photodissociation, Chem. Phys. Lett., 191, 515–520.

    Article  CAS  Google Scholar 

  • Zhao, Y., and D. G. Truhlar, 2005, Design of density functionals that are broadly accurate for thermochemistry kinetics, and nonbonded interactions, J. Phys. Chem., A, 109, 5656–5667.

    Article  CAS  Google Scholar 

  • Zhao, Y., B. J. Lunch, and D. G. Truhlar, 2004, Development and assessment of a new hybrid density functional model for thermochemical kinetics, J. Phys. Chem., A, 108, 2715–2719.

    Article  CAS  Google Scholar 

  • Zhao, Y., N. Gonzalez-Garcia, and D. G. Truhlar, 2005, Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods, J. Phys. Chem. A, 109, 2012–2018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Gross, A., JØrgensen, S. (2008). Theoretical Determinations Of Reaction Parameters For Atmospheric Chemical Reactions. In: Barnes, I., Kharytonov, M.M. (eds) Simulation and Assessment of Chemical Processes in a Multiphase Environment. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8846-9_3

Download citation

Publish with us

Policies and ethics