Advertisement

Composition And Chemistry Of Tropospheric Secondary Organic Aerosols: State Of The Art

  • P. J. Ziemann
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Secondary organic aerosol (SOA) is formed in the atmosphere when volatile organic compounds (VOCs) are oxidized to condensable products. The VOCs are emitted from biogenic and anthropogenic sources, with the major precursors to atmospheric SOA formation being alkenes, aromatics, and possibly alkanes. The chemical reactions can be complex, involving initiation by OH radicals, NO3 radicals or O3 followed by reactions with species such as O2, NO, and peroxy radicals, as well as isomerization and decomposition. The low volatility products, which usually have multiple functional groups, can then partition to the particle phase where they can react further to form oligomers.

Keywords

Reaction mechanism atmospheric aerosol organic particles volatile organic compounds hydrocarbon oxidation gas-particle partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Poschl, Atmospheric aerosols: composition, transformation, climate and health effects,Angew. Chem. Int. Edit. 44, 7520–7540 (2005).CrossRefGoogle Scholar
  2. 2.
    M. O. Andreae and P. J. Crutzen, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry,Science 276, 1052–1058 (1997).CrossRefGoogle Scholar
  3. 3.
    V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, Atmosphere — aerosols, climate, and the hydrological cycle,Science 294, 2119–2124 (2001).CrossRefGoogle Scholar
  4. 4.
    W. White, Contributions to Light Extinction, Section 4 ofVisibility: Existing and Historic Conditions-Causes and Effects, edited by J. C. Trijonis, Report 24 in Acid Deposition: State of Science and Technol., edited by P. M. Irving, U.S. National Acid Precipitation Assessment Program, Washington, DC (1990), pp. 24–85 — 24–102.Google Scholar
  5. 5.
    A. R. Ravishankara, Heterogeneous and multiphase chemistry in the troposphere,Science 276, 1058–1065 (1997).CrossRefGoogle Scholar
  6. 6.
    N. Englert, Fine particles and human health — a review of epidemiological studies,Toxicol. Lett. 149, 235–242 (2004).CrossRefGoogle Scholar
  7. 7.
    J. H. Seinfeld, S. N. and Pandis,Atmospheric Chemistry and Physics (Wiley, New York, 1998).Google Scholar
  8. 8.
    J. H. Seinfeld and J. F. Pankow, Organic atmospheric particulate material,Ann. Rev. Phys. Chem. 54, 121–140 (2003).CrossRefGoogle Scholar
  9. 9.
    Q. Zhang et al. (31 co-authors), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically—influenced Northern hemisphere mid-latitudes,Geophys. Res. Lett. 34, L13801, doi:10.1029/2007GL029979 (2007).Google Scholar
  10. 10.
    R. Atkinson and J. Arey, Atmospheric degradation of volatile organic compounds,Chem. Rev. 103, 4605–4638 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmermann, A global model of natural volatile organic-compound emissions,J. Geophys. Res. 100, 8873–8892 (1995).CrossRefGoogle Scholar
  12. 12.
    J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood,The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, New York, 2002).Google Scholar
  13. 13.
    J. G. Calvert, R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood,The Mechanisms of Atmospheric Oxidation of Alkenes (Oxford University Press, New York, 2000).Google Scholar
  14. 14.
    K. Tsigaridis and M. Kanakidou, Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis,Atmos. Chem. Phys. 3, 1849–1869 (2003).Google Scholar
  15. 15.
    M. Kanakidou et al. (21 co-authors), Organic aerosol and global climate modelling: a review,Atmos. Chem. Phys. 5, 1053–1123 (2005).CrossRefGoogle Scholar
  16. 16.
    J. F. Pankow, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol,Atmos. Environ. 28, 189–193 (1994).CrossRefGoogle Scholar
  17. 17.
    J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields,Environ. Sci. Technol. 30, 2580–2585 (1996).CrossRefGoogle Scholar
  18. 18.
    Y. B. Lim and P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx,Environ. Sci. Technol. 39, 9229– 9236 (2005).CrossRefGoogle Scholar
  19. 19.
    H. Gong, A. Matsunaga, and P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals,J. Phys. Chem. A 109, 4312–4324 (2005).CrossRefGoogle Scholar
  20. 20.
    R. Atkinson, Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method,Atmos. Environ. 41, 8468–8485 (2007).CrossRefGoogle Scholar
  21. 21.
    M. E. Jenkin, Modeling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3,Atmos. Chem. Phys. 4, 1741–1757 (2004).Google Scholar
  22. 22.
    K. S. Docherty, W. Wu, Y. B. Lim, and P. J. Ziemann, Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3,Environ. Sci. Technol. 39, 4049– 4059 (2005).CrossRefGoogle Scholar
  23. 23.
    H. J. Tobias and P. J. Ziemann, Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids,Environ. Sci. Technol. 34, 2105–2115 (2000).CrossRefGoogle Scholar
  24. 24.
    H. J. Tobias, K. S. Docherty, D. E. Beving, and P. J. Ziemann, Effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and O3,Environ. Sci. Technol. 34, 2116–2125 (2000).CrossRefGoogle Scholar
  25. 25.
    H. J. Tobias and P. J. Ziemann, Kinetics of the gas-phase reactions of alcohols, aldehydes, carboxylic acids, and water with the C13 stabilized Criegee intermediate formed from ozonolysis of 1-tetradecene,J. Phys. Chem. A 105, 6129–6135 (2001).CrossRefGoogle Scholar
  26. 26.
    P. J. Ziemann, Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds,J. Phys. Chem. A 106, 4390–4402 (2002).CrossRefGoogle Scholar
  27. 27.
    E. O. Edney, D. J. Driscoll, W. S. Weathers, T. E. Kleindienst, T. S. Conover, C. D. McIver, and W. Li, Formation of polyketones in irradiated toluene/propylene/NOx/air mixtures,Aerosol Sci. Technol. 35, 998–1008 (2001).CrossRefGoogle Scholar
  28. 28.
    J. F. Hamilton, P. J. Webb, A. Lewis, and A. M. M. Reviejo, Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals,Atmos. Environ. 39, 7263–7275 (2005).CrossRefGoogle Scholar
  29. 29.
    M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions,Science 298, 814–817 (2002).CrossRefGoogle Scholar
  30. 30.
    Y. Iinuma, O. Boge, T. Gnauk, and H. Herrmann, Aerosol-chamber study of α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products,Atmos. Environ. 38, 761–773 (2004).CrossRefGoogle Scholar
  31. 31.
    S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan, and J. H. Seinfeld, Particle phase acidity and oligomer formation in secondary organic aerosol,Environ. Sci. Technol. 38, 6582–6589 (2004).CrossRefGoogle Scholar
  32. 32.
    M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, and M. V. Johnston, Formation of oligomers in secondary organic aerosol,Environ. Sci. Technol. 38, 1428–1434 (2004).CrossRefGoogle Scholar
  33. 33.
    L. Müller, M.-C. Reinnig, J. Warnke, and T. Hoffmann, Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/α-pinene ozonolysis,Atmos. Chem. Phys. Discuss. 7, 13883–13913 (2007).Google Scholar
  34. 34.
    J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrandt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, and J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene,J. Phys. Chem. A 110, 9665– 9690 (2006).CrossRefGoogle Scholar
  35. 35.
    M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols,Science 303, 1659–1662 (2004).CrossRefGoogle Scholar
  36. 36.
    R. J. Griffin, D. R. Cocker, III, R. C. Flagan, and J. H. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons,J. Geophys. Res. 104, 3555–3567 (1999).CrossRefGoogle Scholar
  37. 37.
    J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, Aromatics, reformulated gasoline, and atmospheric aerosol organic aerosol formation,Environ. Sci. Technol. 31, 1890–1897 (1997).CrossRefGoogle Scholar
  38. 38.
    H. Takekawa, H. Minoura, and S. Yamazaki, Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,Atmos. Environ. 37, 3413–3424 (2003).CrossRefGoogle Scholar
  39. 39.
    D. R. Cocker, III, S. L. Clegg, R. C. Flagan, and J. H. Seinfeld, The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system,Atmos. Environ. 35, 6049– 6072 (2001).CrossRefGoogle Scholar
  40. 40.
    D. R. Cocker, III, B. T. Mader, M. Kalberer, R. C. Flagan, and J. H. Seinfeld, The effect of water on gas-particle partitioning of secondary organic aerosol. Part II:m-xylene and 1,3,5-trimethylbenxene photooxidation systems,Atmos. Environ. 35, 6073–6085 (2001).CrossRefGoogle Scholar
  41. 41.
    A. M. Jonsson, M. Hallquist, and E. Ljungstrom, Impact of humidity on the ozone initiated oxidation of limonene, ▵3carene, and α-pinene,Environ. Sci. Technol. 40, 188–194 (2006).CrossRefGoogle Scholar
  42. 42.
    D. Johnson, M. E. Jenkin, K. Wirtz, and M. Martin-Reviejo, Simulating the formation of secondary organic aerosol from the photooxidation of toluene,Environ. Chem. 1, 150–165 (2004).CrossRefGoogle Scholar
  43. 43.
    N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, Secondary organic aerosol formation from m-xylene, toluene, and benzeneAtmos. Chem. Phys. 7, 3909–3922 (2007).Google Scholar
  44. 44.
    A. A. Presto, K. E. HuffHartz, and N. M. Donahue, Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration,Environ. Sci. Technol. 39, 7046–7054 (2005).CrossRefGoogle Scholar
  45. 45.
    R. Volkamer, J. L. Jimenez, F. San Martini, K. Dzepina, Q. Zhang, D. Salacedo, L. T. Molina, D. R. Worsnop, and M. J. Molina, Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected,Geophys. Res. Lett. 33, L17811, doi:10.1029/ 2006GL026899 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • P. J. Ziemann
    • 1
  1. 1.Air Pollution Research CenterUniversity of CaliforniaRiversideUSA

Personalised recommendations