Skip to main content

Our Present Understanding of the Gas-Phase Atmospheric Degradation of Vocs

  • Conference paper
Simulation and Assessment of Chemical Processes in a Multiphase Environment

Large quantities of volatile organic compounds (VOCs) are emitted into the atmosphere from biogenic and anthropogenic sources. In the atmosphere, these VOCs undergo a number of chemical transformation processes involving photolysis, reaction with OH radicals, reaction with NO3 radicals, reaction with O3, and reaction with Cl atoms. In this article, a brief discussion is given of the current understanding of the atmospheric degradation mechanisms of VOCs, focusing on alkanes, alkenes and aromatic hydrocarbons which comprise the majority of VOCs emitted from anthropogenic and biogenic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R., 2001, Alkyl nitrate, hydroxyalkyl nitrate and hydroxycarbonyl formation from the NOx-air photooxidations of C5-C8n-alkanes,J. Phys. Chem. A 105: 1020–1027.

    Article  CAS  Google Scholar 

  • Aschmann, S. M., Arey, J., and Atkinson, R., 2001, Atmospheric chemistry of three C10alkanes,J. Phys. Chem. A 105: 7598–7606.

    Article  CAS  Google Scholar 

  • Aschmann, S. M., Arey, J., and Atkinson, R., 2002a, Products and mechanism of the reaction of OH radicals with 2,2,4-trimethylpentane in the presence of NO,Environ. Sci. Technol.36: 625–632.

    Article  CAS  Google Scholar 

  • Aschmann, S. M., Arey, J., and Atkinson, R., 2002b, OH radical formation from the gas-phase reactions of O3with a series of terpenes,Atmos. Environ.36: 4347–4355.

    Article  CAS  Google Scholar 

  • Aschmann, S. M., Arey, J., and Atkinson, R., 2004, Products and mechanism of the reaction of OH radicals with 2,3,4-trimethylpentane in the presence of NO,Environ. Sci. Technol.38: 5038–5045.

    Article  CAS  Google Scholar 

  • Aschmann, S. M., Long, W. D., and Atkinson, R., 2006, Pressure dependence of pentyl nitrate formation from the OH radical-initiated reaction of n-pentane in the presence of NO,J. Phys. Chem. A 110: 6617–6622.

    Article  CAS  Google Scholar 

  • Atkinson, R., 1989, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds,J. Phys. Chem. Ref. DataMonograph,1: 1–246.

    Google Scholar 

  • Atkinson, R., 1991, Kinetics and mechanisms of the gas-phase reactions of the NO3radical with organic compounds,J. Phys. Chem. Ref. Data 20: 459–507.

    Article  CAS  Google Scholar 

  • Atkinson, R., 2000, Atmospheric chemistry of VOCs and NOx,Atmos. Environ.34: 2063–2101.

    Article  CAS  Google Scholar 

  • Atkinson, R., 2007, Rate constants for the atmospheric reactions of alkoxy radicals: an updated estimation method,Atmos. Environ. doi:10.1016/j.atmosenv.2007.07.002.

    Google Scholar 

  • Atkinson, R., and Aschmann, S. M., 1994, Products of the gas-phase reactions of aromatic hydrocarbons — effect of NO2concentration.Int. J. Chem. Kinet.26: 929–944.

    Article  CAS  Google Scholar 

  • Atkinson, R., and Arey, J., 2003, Atmospheric degradation of volatile organic compounds,Chem. Rev.103: 4605–4638.

    Article  CAS  Google Scholar 

  • Atkinson, R., and Arey, J., 2007, Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3radicals,Polycyclic Aromatic Compounds,27: 15–40.

    Article  CAS  Google Scholar 

  • Atkinson, R., Winer, A. M., and Pitts Jr., J. N., 1986, Estimation of night-time N2O5concentrations from ambient NO2and NO3radical concentrations and the role of N2O5in night-time chemistry,Atmos. Environ.20: 331–339.

    Article  CAS  Google Scholar 

  • Atkinson, R., Kwok, E. S. C., Arey, J., and Aschmann, S. M., 1995, Reactions of alkoxy radicals in the atmosphere,Faraday Discuss.100: 23–37.

    Article  CAS  Google Scholar 

  • Atkinson, R., Arey, J., and Aschmann, S. M., 2008, Atmospheric chemistry of alkanes: review and recent developments,Atmos. Environ.42(23): 5859–5871, doi:10.1016/j.atmosenv.2007.08.040.

    Article  CAS  Google Scholar 

  • Baker, J., Aschmann, S. M., Arey, J., and Atkinson, R., 2002, Reactions of stabilized Criegee intermediates from the gas-phase reactions of O3with selected alkenes,Int. J. Chem. Kinet.34: 73–85.

    Article  CAS  Google Scholar 

  • Baker, J., Arey, J., and Atkinson, R., 2005, Formation and reaction of hydroxycarbonyls from the reaction of OH radicals with 1,3-butadiene and isoprene,Environ. Sci. Technol.39: 4091–4099.

    Article  CAS  Google Scholar 

  • Bethel, H. L., Atkinson, R., and Arey, J., 2000, Products of the gas-phase reactions of OH radicals withp-xylene and 1,2,3- and 1,2,4-trimethylbenzene: effect of NO2concentration,J. Phys. Chem. A 104: 8922–8929.

    Article  CAS  Google Scholar 

  • Berndt, T., and Böge, O., 2006, Formation of phenol and carbonyls from the atmospheric reaction of OH radicals with benzene,Phys. Chem. Chem. Phys.8: 1205–1214.

    Article  CAS  Google Scholar 

  • Brown, S. S., Osthoff, H., Stark, H., Dubé, W. P., Ryerson, T. B., Warneke, C., de Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F. C., and Ravishankara, A. R., 2005, Aircraft observations of daytime NO3 and N2O5and their implications for tropospheric chemistry,J. Photochem. Photobiol. A: Chem.176: 270–278.

    Article  CAS  Google Scholar 

  • Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J. H., Wallington, T. J., and Yarwood, G., 2002,The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, New York, pp. 1–556.

    Google Scholar 

  • Cassanelli, P., Fox, D. J., and Cox, R. A., 2007, Temperature dependence of pentyl nitrate formation from the reaction of pentyl peroxy radicals with NO,Phys. Chem. Chem. Phys.9: 4332–4337.

    Article  CAS  Google Scholar 

  • Eberhard, J., Müller, C., Stocker, D. W., and Kerr, J. A., 1995, Isomerization of alkoxy radicals under atmospheric conditions,Environ. Sci. Technol.29: 232–241.

    Article  Google Scholar 

  • Fall, R., 1999, Biogenic emissions of volatile organic compounds from higher plants, in:Reactive Hydrocarbons in the Atmosphere, C. N. Hewitt, ed., Academic, San Diego, CA, pp. 43–96.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmermann, P., 1995, A global model of natural volatile organic compound emissions,J. Geophys. Res.100: 8873–8892.

    Article  CAS  Google Scholar 

  • Gutbrod, R., Schindler, R. N., Kraka, E., and Cremer, D., 1996, Formation of OH radicals in the gas phase ozonolysis of alkenes: the unexpected role of carbonyl oxides,Chem. Phys. Lett.252: 221– 229.

    Article  CAS  Google Scholar 

  • Holt, T., Atkinson, R., and Arey, J., 2005, Effect of water vapor concentration on the conversion of a series of 1,4-hydroxycarbonyls to dihydrofurans,J. Photochem. Photobiol. A: Chem.176: 231–237.

    Article  CAS  Google Scholar 

  • IUPAC, 2007,Evaluated Kinetic Data,http://www.iupac-kinetic.ch.cam.ac.uk/

  • Johnson, D., Lewin, A. G., and Marston, G., 2001, The effect of Criegee-intermediate scavengers on the OH yield from the reaction of ozone with 2-methylbut-2-ene,J. Phys. Chem. A 105: 2933–2935.

    Article  CAS  Google Scholar 

  • Klotz, B., Volkamer, R., Hurley, M. D., Anderson, M. P. S., Nielsen, O. J., Barnes, I., Imamura, T., Wirtz, K., Becker, K.-H., Platt, U., Wallington, T. J., and Washida, N., 2002, OH-initiated oxidation of benzene. Part II. Influence of elevated NOxconcentrations,Phys. Chem. Chem. Phys.4: 4399– 4411.

    Article  CAS  Google Scholar 

  • Koch, R., Knispel, R., Elend, M., Siese, M., and Zetzsch, C., 2007, Consecutive reactions of aromatic-OH adducts with NO, NO2and O2: benzene, toluene, m- and p-xylene, hexamethylbenzene, phenol, m-cresol and aniline,Atmos. Chem. Phys.7: 2057–2071.

    Article  CAS  Google Scholar 

  • Krol, M., van Leeuwen, P. J., and Lelieveld, J., 1998, Global OH trend inferred from methylchloroform measurements,J. Geophys. Res.103: 10697–10711.

    Article  CAS  Google Scholar 

  • Kwok, E. S. C., and Atkinson, R., 1995, Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update,Atmos. Environ.29: 1685–1695.

    Article  CAS  Google Scholar 

  • Kwok, E. S. C., Arey, J., and Atkinson, R., 1996, Alkoxy radical isomerization in the OH radical-initiated reactions of C4-C8 n-alkanes,J. Phys. Chem.100: 214–219.

    Article  CAS  Google Scholar 

  • Logan, J. A., 1985, Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence,J. Geophys. Res.90: 10463–10482.

    Article  Google Scholar 

  • Martin, P., Tuazon, E. C., Aschmann, S. M., Arey, J., and Atkinson, R., 2002, Formation and atmospheric reactions of 4,5-dihydro-2-methylfuran,J. Phys. Chem. A 106: 11492–11501.

    Article  CAS  Google Scholar 

  • Nishino, N., Atkinson, R., and Arey, J., 2007, unpublished data.

    Google Scholar 

  • OEHHA, 2006,Atmospheric Chemistry of Gasoline-Related Emissions: Formation of Pollutants of Potential Concern, Reproductive and Cancer Hazard Assessment Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, January, pp. 1–258.

    Google Scholar 

  • Ohta, T., 1984, Reactivity of allylic hydrogens in cyclohexadiene towards OH radicals,Int. J. Chem. Kinet.16: 1495–1503.

    Article  CAS  Google Scholar 

  • Orlando, J. J., Iraci, L. T., and Tyndall, G. S., 2000a, Chemistry of the cyclopentoxy and cyclohexoxy radicals at subambient temperatures,J. Phys. Chem. A 104: 5072–5079.

    Article  CAS  Google Scholar 

  • Orlando, J. J., Tyndall, G. S., Vereecken, L., and Peeters, J., 2000b, The atmospheric chemistry of the acetonoxy radical,J. Phys. Chem. A 104: 11578–11588.

    Article  CAS  Google Scholar 

  • Paulson, S. E., and Orlando, J. J., 1996, The reaction of ozone with alkenes: an important source of HOxin the boundary layer,Geophys. Res. Lett.23: 3727–3730.

    Article  CAS  Google Scholar 

  • Placet, M., Mann, C. O., Gilbert, R. O., and Niefer, M. J., 2000, Emissions of ozone precursors from stationary sources: a critical review,Atmos. Environ.34: 2183–2204.

    Article  CAS  Google Scholar 

  • Platt, U., and Heintz, F., 1994, Nitrate radicals in tropospheric chemistry,Israel J. Chem.14: 289–300.

    Google Scholar 

  • Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R., 2001, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades,Science 292: 1882–1888.

    Article  CAS  Google Scholar 

  • Reisen, F., Aschmann, S. M., Atkinson, R., and Arey, J., 2005, 1,4-Hydroxycarbonyl products of the OH radical initiated reactions of C5-C8 n-alkanes in the presence of NO,Environ. Sci. Technol.39: 4447– 4453.

    Article  CAS  Google Scholar 

  • Sawyer, R. F., Harley, R. A., Cadle, S. H., Norbeck, J. M., Slott, R., and Bravo, H. A., 2000, Mobile sources critical review: 1998 NARSTO assessment,Atmos. Environ.34: 2161–2181.

    Article  CAS  Google Scholar 

  • Smith, D. F., McIver, C. D., and Kleindienst, T. E., 1998, Primary product distribution from the reaction of hydroxyl radicals with toluene at ppb NOxmixing ratios,J. Atmos. Chem.30: 209–228.

    Article  CAS  Google Scholar 

  • Smith, D. F., Kleindienst, T. E., and McIver, C. D., 1999, Primary product distributions from the reaction of OH withm-,p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,J. Atmos. Chem.34: 339–364.

    Article  CAS  Google Scholar 

  • Tanner, D. J., Jefferson, A., and Eisele, F. L., 1997, Selected ion chemical ionization mass spectrometric measurement of OH,J. Geophys. Res.102: 6415–6425.

    Article  CAS  Google Scholar 

  • Tuazon, E. C., Aschmann, S. M., Atkinson, R., and Carter, W. P. L., 1998, The reactions of selected acetates with the OH radical in the presence of NO: novel rearrangement of alkoxy radicals of structure RC(O)OCH(O°)R',J. Phys. Chem. A 102: 2316–2321.

    Article  CAS  Google Scholar 

  • Tuazon, E. C., Aschmann, S. M., Nguyen, M. V., and Atkinson, R., 2003, H-Atom abstraction from selected C-H bonds in 2,3-dimethylpentanal, 1,4-cyclohexadiene, and 1,3,5-cycloheptatriene,Int. J. Chem. Kinet.35: 415–426.

    Article  CAS  Google Scholar 

  • Volkamer, R., Platt, U., and Wirtz, K., 2001, Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway for benzene, toluene andp-xylene,J. Phys. Chem. A 105: 7865–7874.

    Article  CAS  Google Scholar 

  • Volkamer, R., Spietz, P., Burrows, J., and Platt, U., 2005, High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,J. Photochem. Photobiol. A: Chem.172: 35–46.

    Article  CAS  Google Scholar 

  • Zhao, J., Zhang, R., Misawa, K., and Shibuya, K., 2005, Experimental product study of the OH-initiated oxidation ofm-xylene,J. Photochem. Photobiol. A: Chem.176: 199–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Atkinson, R. (2008). Our Present Understanding of the Gas-Phase Atmospheric Degradation of Vocs. In: Barnes, I., Kharytonov, M.M. (eds) Simulation and Assessment of Chemical Processes in a Multiphase Environment. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8846-9_1

Download citation

Publish with us

Policies and ethics