Skip to main content

Coiled-Coil- And Intermediate Filament-Proteins In The Plant Nucleoskeleton

  • Conference paper
The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology

Plant cells have a nucleoskeleton formed by a peripheral lamina and an internal network of branched knobbed 15–25 nm filaments, with a periodic organization similar to that of intermediate filaments. We review here the features of NuMA and lamins, two main intermediate filament- type proteins of the vertebrate nucleoskeleton, and also some plant nucleoskeleton proteins sharing antigenic determinants with those of vertebrates. In addition, plants seem to have evolved unique intermediate filament-like nucleoskeleton proteins that are functional homologues of the vertebrate ones, such as NIFs, NMCP1, MFP1 and NMP1. The present challenge is to determine the specific subsets of proteins forming the lamina and the nucleoskeleton in plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. L. Spector and S. Gasser, A molecular dissection of nuclear function, EMBO Rep. 4, 18–23 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. R. Berezney, Regulating the mammalian genome: the role of nuclear architecture, Advan. Enzyme Regul. 42, 39–52 (2002).

    Article  CAS  Google Scholar 

  3. J. R. Chubb and W. A. Bickmore, Considering nuclear compartmentalization in the light of nuclear dynamics, Cell 112, 403–406 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. D. L. Spector, Nuclear domains, J. Cell Sci. 114, 2891–2893 (2001).

    PubMed  CAS  Google Scholar 

  5. M. Dundr and T. Misteli, Nucleolomics: an inventory of the Nucleolus, Mol. Cell Biol. 9, 5–7 (2002).

    CAS  Google Scholar 

  6. C. Francastel, D. Schübeler, D. I. K. Martín, and M. Groudine, Nuclear compartmentalization and gene activity, Nat. Rev. Mol. Cell Biol. 1, 137–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. A. R. Leicht, Higher levels of organization in the interphase nucleus of cycling and differentiated cells, Microbiol. Mol. Bio. Rev. 64, 138–152 (2000).

    Article  Google Scholar 

  8. L. A. Parada and T. Misteli, Chromosome positioning in the interphase nucleus, Trends Cell Biol. 12, 425–432 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. A. Goren and H. Cedar, Replicating by the clock, Nat. Rev. Mol. Cell Biol. 4, 25–32 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. R. Samaniego, C. De la Torre, and S. Moreno Díaz de la Espina, Dynamics of replication foci and nuclear matrix during S phase in Allium cepa L. cells, Planta 215,195–204 (2001).

    Article  CAS  Google Scholar 

  11. R. Acevedo, A. Cuadrado, C. De la Torre, and S. Moreno Díaz de la Espina, Behaviour of ribosomal genes and nucleolar domains during activation in sugarcane (Sacharum officinarum L.) root primordia: from the unsoaked quiescent state to the steady state of proliferation, Eur. J. Histochem. 46, 143–158 (2002).

    PubMed  CAS  Google Scholar 

  12. C. K. Dreger, A. R. König, H. Spring, P. Lichter, and H. Herrmann, Investigation of nuclear architecture with a domain-presenting expression system, J. Struct. Biol. 140, 100–115 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Nickerson, Experimental observations of a nuclear matrix, J. Cell Sci. 114, 463– 474 (2001).

    PubMed  CAS  Google Scholar 

  14. M. Wasser and W. Chia, The EAST protein of Drosophila controls and expandable nuclear endoskeleton, Nature Cell Biol. 2, 268–275 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. D. A. Jackson and P. R. Cook, Visualization of a filamentous nucleoskeleton with a 23 NSK axial repeat, EMBO J. 7, 3667–3677 (1988).

    PubMed  CAS  Google Scholar 

  16. D. He, J. A. Nickerson, and P. Penman, Core filaments of the nuclear matrix, J. Cell Biol. 110, 569–580 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. P. Barboro, C. D'Arrigo, M. Mormino, R. Coradeghini, S. Parodi, E. Patrone, and C. Balbi, An intranuclear frame for chromatin compartmentalization and higher-order folding, J. Cell Biochem. 88, 113–120 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S. Moreno Díaz de la Espina, Nuclear matrix isolated from plant cells, in: Int Rev Cytol, edited by R. Berezney and K. W. Jeon, vol. 162B, pp. 75–139 (1995).

    Google Scholar 

  19. W. Yu and S. Moreno Díaz de la Espina, The plant nucleoskeleton: ultrastructural organization and identification of NuMA homologues in the nuclear matrix and mitotic spindle of plant cells, Exp. Cell Res. 246, 516–526 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. T. T. Calikowski, T. Meulia, and I. Meier, A proteomic study of the Arabidopsis nuclear matrix, J. Cell Biochem. 218, 361–378 (2003).

    Article  CAS  Google Scholar 

  21. A. K. McNulty and M. J. Saunders, Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins, J. Cell Sci. 103, 407– 414 (1992).

    PubMed  CAS  Google Scholar 

  22. A. Mínguez and S. Moreno Díaz de la Espina, Immunological characterization of lamins in the nuclear matrix of onion cells, J. Cell Sci. 106, 431–439 (1993).

    PubMed  Google Scholar 

  23. N. De Ruijter, T. Ketelaar, S. S. D. Blumenthal, A. Emons, and J. H. N. Schel, Spectrin-like proteins in plant nuclei, Cell Biol. Int. 24, 427–438 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. J. R. Cruz, C. De la Torre, and S. Moreno Díaz de la Espina, Nuclear actin in plants, Cell Biol. Int., 32, 584–587 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. A. Mínguez and S. Moreno Díaz de la Espina, In situ localization of nucleolin in the plant nuclear matrix, Exp. Cell Res. 222, 171–178 (1996).

    Article  PubMed  Google Scholar 

  26. P. Cui and S. Moreno Díaz de la Espina, Sm and U2B” proteins redistribute to different nuclear domains in dormant and proliferating onion cells, Planta 217, 21–31 (2003).

    PubMed  CAS  Google Scholar 

  27. D. Hatton and J. C. Gray, Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins, Plant J. 18, 417–429 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. G. Morisawa, A. Han-yama, I. Moda, A. Tamai, M. Iwabuchi, and T. Meshi, AHM1, a novel type of nuclear matrix—localized, MAR binding protein with a single AT hook and a J domain—homologous region, Plant Cell 12, 1903–1916 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. H. Li and S. J. Roux, Casein kinase II protein kinase is bound to lamin-matrix and phosphorylates lamin-like proteins in isolated pea nuclei, Proc. Natl. Acad. Sci. USA 89, 8434–8438 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. Z. J. Xu, K. Ueda, K. Masuda, M. Ono, and M. Inoue, Molecular characterization of a novel protein disulfide isomerase in carrot, Gene 284, 225–231 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. K. Masuda, Z. J. Xu, S. Takahasi, A. Ito, M. Ono, K. Nomura and M. Inoue, Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long α-helical domain, Exp. Cell Res. 232, 173–181 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. I. Meier, T. Phelan, W. Gruissem, S. Spiker, and D. Schneider, MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA, Plant Cell 8, 2105–2115 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. A. Lupas, Coiled coils: new structures and new functions, Trends Biochem. Sci. 21, 375– 382 (1996).

    PubMed  CAS  Google Scholar 

  34. J. Burkhard, J. Stetefeld, and S. V. Strelkov, Coiled-coils: a highly versatile protein folding motif, Trends Cell Biol. 11, 82–88 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. P. A. Coulombe, L. Ma, S. Yamadam, and M. Wawersik, Intermediate filaments at a glance, J. Cell Sci. 114, 4345–4347 (2001).

    PubMed  CAS  Google Scholar 

  36. S. V. Strelkov, H. Herrmann, and U. Aebi, Molecular architecture of intermediate filaments, Bioessays, 25, 243–251 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. H. Hermann and U. Aebi, Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics, Curr. Opin. Cell Biol. 12, 79–90 (2001).

    Article  Google Scholar 

  38. Y. H. Chou and R. D. Goldman. Intermediate filaments on the move, J. Cell Biol. 150, F101–F105 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. R. Foisner, Dynamic organization of intermediate filaments and associated proteins during the cell cycle, Bioessays 19, 297–305 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi, Intermediate filaments: from cell architecture to nanomechanics, Nature Rev. Mol. Cell Biol. 8, 562–573 (2007).

    Article  CAS  Google Scholar 

  41. M. Inagaki, Y. Matsuoka, K. Tsujimura, S. Ando, T. Tokui, T. Takahashi, and N. Inagaki, Dynamic property of intermediate filaments: regulation by phosphorylation, BioEssays 18, 481–487 (1996).

    Article  CAS  Google Scholar 

  42. R. D. Moir, T. P. Spann, R. I. López-Soler, M. Yoon, A. E. Goldman, S. Khuon, and R. D. Goldman, The dynamics of the nuclear lamins during the cell cycle. Relationship between structure and function, J. Struct. Biol. 129, 324–334 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. A. Saredi, L. Howard, and D. A. Compton, Phosphorylation regulates the assembly of NuMA in a mammalian mitotic extract, J. Cell Sci. 110, 1287–1297 (1997).

    PubMed  CAS  Google Scholar 

  44. G. V. Tolstonov, M. Sabasch, and P. Traub, Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function, DNA Cell Biol. 21, 213–239 (2002).

    Article  Google Scholar 

  45. G. Li, G. V. Tostonov, M. Sabasch, and P. Traub, Interaction in vitro of type III intermediate filament proteins with supercoiled plasmid DNA and modulation of eukaryotic DNA topoisomerase I and II activities, DNA Cell Biol. 21, 743–769 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. G. H. Tolstonov, E. Mothes, R. L. Shoeman, and P. Traub, Isolation of SDS-stable complexes of intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts, DNA Cell Biol. 20, 531–554 (2001).

    Article  Google Scholar 

  47. P. Traub, Intermediate filaments and gene regulation, Physiol. Chem. Med. NMR 27, 377–400 (1995).

    CAS  Google Scholar 

  48. M. Ohno, T. Fukagawa, J. S. Lee, and T. Ikemura, Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies, Chromosoma 111, 201–213 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. D. He, C. Zeng, and B. R. Brinkley, Nuclear matrix proteins as structural and functional components of the mitotic apparatus, in: Int Rev Cytol, edited by R. Berezney and K. W. Jeon, vol. 162B, pp. 1–74 (1995).

    Google Scholar 

  50. J. Harborth, J. Wang, C. Gueth-Hallonet, K. Weber, and M. Osborn, Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice, EMBO J. 18, 1689– 1700 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. J. Harborth, K. Weber, and M. Osborn, GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA, J. Biol. Chem. 275, 31979–31985 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. S. N. Mattagajasingh, S. C. Huang, J. Harternstein, M. Snyder, V. T. Marchesi, and E. J. Benz Jr, A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein, J. Cell Biol. 145, 29–43 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. M. Novatchkova and F. Eisenhaber, A CH-domain-containing N terminus in NuMA?, Protein Sci. 11, 2281–2284 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. K. A. Mattern, B. M. Humbel, A. O. Muijsers, L. de Jong, and R. van Driel, hnRNP proteins and B23 are the major proteins of the internal nuclear matrix of Hela cells, J. Cell Biochem. 62, 275–289 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. A. Merdes, R. Heald, K. Samejina, W. C. Earnshaw, and D. Cleveland, Formation of spindle poles by dynein/dynactin-dependent transport of NuMA, J. Cell Biol. 149, 851– 861 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. Q. Du, L. Taylor, D. A. Compton, and I. G. Macara, LGN blocks the ability of NuMA to bind and stabilize microtubules: a mechanism for mitotic spindle assembly regulation, Curr. Biol. 12, 1928–1933 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. M. V. Nachury, T. J. Maresca, W. C. Salmon, C. M. Waterman-Storer, R. Heald, and K. Weis, Importin β is a mitotic target of the small GTPase Ran in spindle assembly, Cell 104, 95–106 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. M. A. Dionne L. Howard, and D. A. Compton, NuMA is a component of an insoluble matrix at mitotic spindle poles, Cell Motil. Cytoskel. 42, 189–203 (1999).

    Article  CAS  Google Scholar 

  59. J. M. Scholey, G. C. Rogers, and D. J. Sharp, Mitosis, microtubules, and the matrix, J Cell Biol 154, 261–266 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. L. Haren and A. Merdes, Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules, J. Cell Sci. 115, 1815–1824 (2002).

    PubMed  CAS  Google Scholar 

  61. M. E. Luderus, J. L. den Blaawen, O. J. de Smit, D. A. Compton, and R. van Driel, Binding of MARs to lamin polymers involves single stranded regions and the minor groove, Mol. Cell Biol. 14, 6297–6305 (1994).

    PubMed  CAS  Google Scholar 

  62. J. Harborth, S. M. Elbashi, K. Bechert, Th. Tuschl, and K. Weber, Identification of essential genes in cultured mammalian cells using small interfering RNAs, J. Cell Sci. 114, 4557–4565 (2001).

    PubMed  CAS  Google Scholar 

  63. P. Taimen and M. Kallajoki, NuMA and nuclear lamins behave differently in Fas-mediated apoptosis, J. Cell Sci. 116, 571–583 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. M. C. Criqui and P. Genschik, Mitosis in plants: how far we have come at the molecular level?, Curr. Opin. Plant Biol. 5, 487–493 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. C. Wiese, A. Wilde, M. S. Moore, S. A. Adam, A. Merdes, and Y. Zheng, Role of importin-β in coupling Ran to downstream targets in microtubule assembly, Science 291, 653–656 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. N. Stuurman, S. Heins, and U. Aebi, Nuclear lamins: their structure, assembly and interactions, J. Struct. Biol. 122, 42–66 (1998).

    Article  PubMed  CAS  Google Scholar 

  67. Y. Gruenbaum, A. Margalit, R. D. Goldman, D. K. Shumaker, and K. L. Wilson, The nuclear lamina comes of age, Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    Article  CAS  Google Scholar 

  68. S. Vlcek and R. Foisner, A-type lamin networks in light of laminopathic diseases, BBA 1773, 661–674 (2007).

    PubMed  CAS  Google Scholar 

  69. S. Melcer, Y. Gruenbaum, and G. Krhone, Invertebrate lamins, Exp. Cell Res. 313, 2157–2166 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. R. D. Goldman, Y. Gruenbaum, R. D. Moir, D. K. Shumaker, and T. P. Spann, Nuclear lamins: building blocks of nuclear architecture, Gene Dev. 16, 533–547 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. C. J. Hutchinson, M. Alvarez-Reyes, and O. A. Vaughan, Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes?, J. Cell Sci. 114, 9–19 (2001).

    Google Scholar 

  72. D. Dorner, J. Gotzmann, and R. Foisner, Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation, FEBS J. 274, 1362–1373 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. R. D. Moir, M. Yoon, and R. D. Goldman, Nuclear lamins A and B1: different patterns of assembly during nuclear envelope formation in living cells, J. Cell Biol. 151, 1155– 1168 (2000).

    Article  PubMed  CAS  Google Scholar 

  74. R. D. Moir, T. P. Spann, H. Herrmann, and R. D. Goldberg, Disruption of nuclear lamin organization blocks the elongation phase of DNA replication, J. Cell Biol. 149, 1179– 1192 (2001).

    Article  Google Scholar 

  75. S. Martins, S. Eikvar, K. Furukawa, and P. Collas, HA95 and LAP2β mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication, J. Cell Biol. 160, 177–188 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. H. M. Chen, J. Zhou, and Y. R. Dai, Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock, FEBS Lett. 480, 165–168 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. K. Graumann, S. L. Irons, J. Runions, and D. E. Evans, Retention and mobility of mammalian lamin B receptor in the plant nuclear envelope, Biol. Cell 99, 553–562 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. R. B. Meagher and M. Fechheimer, The Arabidopsis cytoskeletal genome, in: The Arabidopsis Book, edited by C. R. Sommerville and E. M. Meyerowitz, pp. 1–26, American Society of Plant Biologists, Rockville, MD, doi:10.119/tab.0096 (2003).

    Google Scholar 

  79. S. Collier, A. Pendle, K. Boudonck, T. van Rij, L. Dolan, and P. Shaw, A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis, Mol. Biol. Cell 17, 2942–2951 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. S. S. D. Blumenthal, G. B. Clark, and S. J. Roux, Biochemical and immunological characterization of pea nuclear intermediate filament proteins, Planta 218, 965–975 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. K. Masuda, S. Harumaya, and K. Fujino, Assembly and disassembly of the peripheral architecture of the plant cell nucleus during mitosis, Planta 210, 165–167 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. P. A. Harder, R. A. Silverstein, and I. Meier, Conservation of matrix attachment region-binding filament-like protein 1 among higher plants, Plant Physiol. 122, 1–10 (2000).

    Article  Google Scholar 

  83. R. Samaniego, W. Yu, I. Meier, and S. Moreno Díaz de la Espina, Characterization and high resolution distribution of a matrix attachment region-binding protein (MFP1) in proliferating cells of onion, Planta 212, 535–546 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. R. Samaniego, S. Y. Jeong, C. De la Torre, I. Meier, and S. Moreno Díaz de la Espina, CK2 phosphorylation weakens 90 kDa MFP1 association to the nuclear matrix in Allium cepa, J. Exp. Bot. 57, 101–111 (2006).

    Google Scholar 

  85. K. Masuda, S. Takahashi, K. Nomura, M. Arimoto, and M. Inoue, Residual structure and constituent proteins of the peripheral framework of the cell nucleus in somatic embryos from Daucus carota L., Planta 191, 523–540 (1993).

    Article  Google Scholar 

  86. A. Rose, F. Gindullis, and I. Meier, A novel α-helical protein, specific to and highly conserved in plants, is associated with the nuclear matrix fraction, J. Exp. Bot. 54, 1133– 1141 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. F. Gindullis, A. Rose, S. Patel, and I. Meier, Four signature motifs define the first class of structurally related large coiled-coil proteins in plants, BMC Genomics 3, 9 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

De La Espina, S.M.D., De La Torre, C. (2008). Coiled-Coil- And Intermediate Filament-Proteins In The Plant Nucleoskeleton. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_3

Download citation

Publish with us

Policies and ethics