Skip to main content

The Arabidopsis Genome Contains 61 Kinesins, The Largest Kinesin Family Of Any Fully Sequenced And Annotated Genome. Characterizing Each Member Of A Large Protein Family Is A Difficult And Laborious Task, Not Only Due To The Size, But Also The Inherent Diversification And/Or Redundancy Associated With Gene Duplication. An Alternative Approach To Better Understand The Arabidopsis Kinesin Family Is To Study The Domain Composition Of These Proteins. Domains Are Defined As The Structural And Functional Units Of Proteins. Understanding The Domains And Domain Structure Of An Unknown Protein Often Allows For A Reliable Prediction Of Function When Experimental Evidence Is Unavailable. Kinesins Share A Highly Conserved Motor Domain With Low Sequence Similarity Outside Of This Domain, And Many Members Contain Additional Protein Domains In The Nonconserved Regions. New Arrangements Of Domains, By Means Of Genetic Duplication, Replication, Or Loss, Result In Novel Proteins With Unique Functions. Using Both The Arabidopsis And Other Sequenced Genomes, It Was Found That Several Kinesins Have Protein Domain Arrangements Specific To Different Lineages, Providing Compelling Evidence For The Evolution Of Kinesins With Novel Functions. A Phylogenic Analysis Of Plant-Specific Kinesin Domains, As Well As A Comparative Review Of The Molecular/ Biochemical Functions Of These Domains, Is Presented In This Chapter. Combined, They Provide An Alternative Means To Understanding And Developing More Direct And Relevant Hypotheses Concerning Novel Kinesins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. J. Lawrence, R. K. Dawe, K. R. Christie, D. W. Cleveland, S. C. Dawson, S. A. Endow, L. S. B. Goldstein, H. V. Goodson, N. Hirokawa, J. Howard, R. L. Malmberg, J. R. McIntosh, H. Miki, T. J. Mitchison, Y. Okada, A. S. N. Reddy, W. M. Saxton, M. Schliwa, J. M. Scholey, R. D. Vale, C. E. Walczak, and L. Wordeman, A standardized kinesin nomenclature, J. Cell Bio. 167(1), 19–22 (2004).

    Article  CAS  Google Scholar 

  2. H. Miki, Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol. 15(9), 467–76 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. D. N. Richardson, M. P. Simmons, and A. S. Reddy, Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes, BMC Genomics 7, 18 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. A. S. N. Reddy and I. Day, Kinesins in the Arabidopsis genome: A comparative analysis among eukaryotes, BMC Genomics 2(1), 2 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. A. Bannigan, M. Lizotte-Waniewski, M. Riley, and T. I. Baskin, Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants, Cell Motil. Cytoskel. 65(1), 1–11 (2007).

    Article  CAS  Google Scholar 

  6. H. Tanaka, M. Ishikawa, S. Kitamura, Y. Takahashi, T. Soyano, C. Machida, and Y. Machida, The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis, Genes Cells 9(12), 1199–211 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. S. Muller, S. Han, and L. G. Smith, Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana, Curr. Biol. 16(9), 888–94 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Y. R. Lee, Y. Li, and B. Liu, Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis, Plant Cell 19(8), 2595–605 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. C. B. Chen, A. Marcus, W. X. Li, Y. Hu, J. P. V. Calzada, U. Grossniklaus, R. J. Cyr, and H. Ma, The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis, Development 129(10), 2401–2409 (2002).

    PubMed  CAS  Google Scholar 

  10. J. C. Ambrose, W. Li, A. Marcus, H. Ma, and R. Cyr, A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis, Mol. Biol. Cell 16(4), 1584–1592 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. D. G. Oppenheimer, M. A. Pollock, J. Vacik, D. B. Szymanski, B. Ericson, K. Feldmann, and M. D. Marks, Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis, PNAS 94, 6261–6266 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Jones, M. J. Raymond, and N. Smirnoff, Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis, Plant J. 45(1), 83–100 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. D. B. Wetlaufer, Nucleation, rapid folding, and globular intrachain regions in proteins, PNAS 70(3), 697–701 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. R. F. Doolittle, The multiplicity of domains in proteins, Ann. Rev. Biochem. 64, 287–314 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. C. P. Ponting and R. R. Russell, The natural history of protein domains, Ann. Rev. Biophys. Biomol. Struct. 31, 45–71 (2002).

    Article  CAS  Google Scholar 

  16. F. Jacob, Molecular tinkering in evolution, in Evolution from Molecules to Men, D.S. Bendell, Editor. 1983, Cambridge University Press: Cambridge, pp. 131–144.

    Google Scholar 

  17. R. F. Doolittle, Similar amino acid sequences: chance or common ancestry? Science 214(4517), 149–159 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. A. N. Lupas, C. P. Ponting, and R. B. Russell, On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? J. Struct. Biol. 134(2–3), 191–203 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D.McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Sodergren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S. Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H. M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. W. Davis, N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, N. Shimizu, K. Kawasaki, S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti, H. C. Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S. Furey, J. Galagan, J. G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J. Kent, P. Kitts, E. V. Koonin, I. Korf, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght, T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler, J. Schultz, G. Slater, A. F. Smit, E. Stupka, J. Szustakowski, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H. Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J.Peterson, A. Felsenfeld, K. A. Wetterstrand, A. Patrinos, M. J. Morgan, P. de Jong, J. J. Catanese, K. Osoegawa, H. Shizuya, S. Choi and Y. J. Chen, Initial sequencing and analysis of the human genome, Nature 409(6822), 860–921 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. S. Liu, C. Zhang, and Y. Zhou, Domain graph of Arabidopsis proteome by comparative analysis, J. Proteome Res. 4(2), 435–444 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. F. J. Kull, Motor proteins of the kinesin superfamily: structure and mechanism, Essays Biochem. 35, 61–73 (2000).

    PubMed  CAS  Google Scholar 

  22. C. J. Lawrence, R. L. Malmberg, M. G. Muszynski, and R. K. Dawe, Maximum likelihood methods reveal conservation of function among closely related kinesin families, J. Mol. Evol. 54(1), 42–53 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. R. D. Vale and R. J. Fletterick, The design plan of kinesin motors, Ann. Rev. Cell Dev. Biol. 13, 745–77 (1997).

    Article  CAS  Google Scholar 

  24. E. P. Sablin, R. B. Case, S. C. Dai, C. L. Hart, A. Ruby, R. D. Vale, and R. J. Fletterick, Direction determination in the minus-end-directed kinesin motor ncd, Nature 395(6704), 813–816 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. E. P. Sablin, F. J. Kull, R. Cooke, R. D. Vale, and R. J. Fletterick, Crystal structure of the motor domain of the kinesin-related motor ncd, Nature 380(6574), 555–559 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. J. Nakayama, G. Xiao, K. Noma, A. Malikzay, P. Bjerling, K. Ekwall, R. Kobayashi, and S. I. Grewal, Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity, Embo J. 22(11), 2776–2787 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting, SMART, a simple modular architecture research tool: identification of signaling domains, PNAS 95(11), 5857–5864 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. S. E. Abdel-Ghany, I. S. Day, M. P. Simmons, P. Kugrens, and A. S. Reddy, Origin and evolution of Kinesin-like calmodulin-binding protein, Plant Physiol. 138(3), 1711–1722 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. T. Sakai, H. V. Honing, M. Nishioka, Y. Uehara, M. Takahashi, N. Fujisawa, K. Saji, M. Seki, K. Shinozaki, M. A. Jones, N. Smirnoff, K. Okada, and G. O. Wasteneys, Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis, Plant J. 53(1), 157–171 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. G. Yang, P. Gao, H. Zhang, S. Huang, and Z. L. Zheng, A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis, PLoS ONE. 2(10), e1074 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. M. Peifer, S. Berg, and A. B. Reynolds, A repeating amino acid motif shared by proteins with diverse cellular roles, Cell 76(5), 789–791 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. E. Wieschaus and R. Riggleman, Autonomous requirements for the segment polarity gene armadillo during Drosophila embryogenesis, Cell 49(2), 177–184 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. M. Hatzfeld, The armadillo family of structural proteins, Int. Rev. Cytol. — a Survey of Cell Biology, 186, 179–224 (1999).

    CAS  Google Scholar 

  34. S. Kim, H. I. Choi, H. J. Ryu, J. H. Park, M. D. Kim, and S. Y. Kim, ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component, Plant Physiol. 136(3), 3639–3648 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. L. M. Palevitz, Cloning and Characterization of PAK, a Novel Plant Kinesin-Like Protein Involved in Guard Cell Development and Expressed in Other Differentiating Cell Types in the Brassicacease. 1999, Cornell: Ithaca, NY.

    Google Scholar 

  36. K. Tamura, J. Dudley, M. Nei, and S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol. 24(8), 1596–1599 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. J. C. Coates, L. Laplaze, and J. Haseloff, Armadillo-related proteins promote lateral root development in Arabidopsis, PNAS 103(5), 1621–1626 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. T. Jimbo, Y. Kawasaki, R. Koyama, R. Sato, S. Takada, K. Haraguchi, and T. Akiyama, Identification of a link between the tumour suppressor APC and the kinesin superfamily, Nat. Cell Biol. 4(4), 323–327 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. P. C. Salinas, Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway, Trends Cell Biol. 17(7), 333–342 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. P. Tompa, Y. Emori, H. Sorimachi, K. Suzuki, and P. Friedrich, Domain III of calpain is a ca2+-regulated phospholipid-binding domain, Biochem. Biophys. Res. Comm. 280(5), 1333–1339 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. A. Rodriguez, E. Samoff, M. G. Rioult, A. Chung, and N. W. Andrews, Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport, J. Cell Biol. 134(2), 349–362 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. H. Mitsui, K Yamaguchi-Shinozaki, K. Shinozaki, K. Nishikawa, and H. Takahashi, Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA, Mol. Gen. Genet. 362–368 (1993).

    Google Scholar 

  43. K. Vancompernolle, M. Gimona, M. Herzog, J. Van Damme, J. Vandekerckhove, and V. Small, Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin, FEBS Lett. 274(1–2), 146–150 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. M. Gimona, K. Djinovic-Carugo, W. J. Kranewitter, and S. J. Winder, Functional plasticity of CH domains, FEBS Lett. 513(1), 98–106 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. P. Matsudaira, Modular organization of actin crosslinking proteins, Trends Biochem. Sci. 16(3), 87–92 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. M. Gimona and S. J. Winder, Single calponin homology domains are not actin-binding domains, Curr. Biol. 8(19), R674–R675 (1998).

    Article  PubMed  CAS  Google Scholar 

  47. A. M. Bashour, A. T. Fullerton, M. J. Hart, and G. S. Bloom, IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments, J. Cell Biol. 137(7), 1555–1566 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. M. L. Preuss, D. R. Kovar, Y. R. Lee, C. J. Staiger, D. P. Delmer, and B. Liu, A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers, Plant Physiol. 136(4), 3945–3955 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. A. J. Saurin, K. L. Borden, M. N. Boddy, and P. S. Freemont, Does this have a familiar RING?, Trends Biochem. Sci. 21(6), 208–214 (1996).

    PubMed  CAS  Google Scholar 

  50. R. Gamsjaeger, C. K. Liew, F. E. Loughlin, M. Crossley, and J. P. Mackay, Sticky fingers: zinc-fingers as protein-recognition motifs, Trends Biochem. Sci. 32(2), 63–70 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Z. Hua and T. H. Kao, Identification and characterization of components of a putative petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility, Plant Cell 18(10), 2531–2553 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins, Clustal W and Clustal X version 2.0, Bioinformatics 23(21), 2947–2948 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. C. Maris, C. Dominguez, and F. H. Allain, The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression, FEBS J. 272(9), 2118–2131 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. M. Vermel, B. Guermann, L. Delage, J. M. Grienenberger, L. Marechal-Drouard, and J. M. Gualberto, A family of RRM-type RNA-binding proteins specific to plant mitochondria, PNAS 99(9), 5866–5871 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. G. Schuster and W. Gruissem, Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein, Embo J. 10(6), 1493–1502 (1991).

    PubMed  CAS  Google Scholar 

  56. M. Kloc, N. R. Zearfoss, and L. D. Etkin, Mechanisms of subcellular mRNA localization, Cell 108(4), 533–544 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Y. Kanai, N. Dohmae, and N. Hirokawa, Kinesin transports RNA: isolation and characterization of an RNA-transporting granule, Neuron 43(4), 513–525 (2004).

    Article  PubMed  CAS  Google Scholar 

  58. P. Enkhbayar, M. Kamiya, M. Osaki, T. Matsumoto, and N. Matsushima, Structural principles of leucine-rich repeat (LRR) proteins, Proteins 54(3), 394–403 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. S. K. Hanks and T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification, Faseb J. 9(8), 576–596 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Malcos, J.L., Cyr, R.J. (2008). Domain Complexity Of Plant Kinesins. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_17

Download citation

Publish with us

Policies and ethics