Skip to main content

Tubulin Isotypes And Their Role In Microtubule Dynamic Instability, Implications For Modeling And Rational Design Of Inhibitors

  • Conference paper
The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology

The structural protein, β-tubulin is the target for a number of anti-mitotic compounds that bind to and inhibit microtubule dynamics, leading to apoptosis in all dividing cells. The existence of several isotypes of β-tubulin, coupled with their varied distribution throughout different organisms provides a platform upon which to construct novel agents, which are able to differentiate between cell types. Several examples of compounds that perturb microtubule dynamics, such as paclitaxel, are currently some of the most effective drugs used in cancer chemotherapy. Additionally, MT disrupting agents such as the dinitroanilines, disrupt plant but not animal microtubules and are therefore useful herbicides. However, even with their wide use and important function, the method of action of MT disrupting compounds is unknown. We have performed homology modeling on approximately 500 α- and β-tubulin sequences and identified an expected global, structural similarity of tubulin monomers. We have been able to calculate discernable differences in several properties, including their net electric charge, volume, surface area, electric dipole moment and dipole vector orientation. These are properties that may influence the functional characteristics of individual tubulin monomers, thereby resulting in a global effect on microtubule stability and assembly kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Luduena, Multiple forms of tubulin: different gene products and covalent modifications, Int Rev Cytol 178:207–275 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. B. R. Oakley, C. E. Oakley, Y. Yoon, and M. K. Jung. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–1301 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. Y. F. Inclan, and E. Nogales. Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci 114:413–422 (2001).

    PubMed  CAS  Google Scholar 

  4. D. Panda, H. P. Miller, A. Banerjee, R. F. Luduena, and L. Wilson. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci U S A 91:11358–11362 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. P. G. McKean, S. Vaughan, and K. Gull. The extended tubulin superfamily. J Cell Sci 114:2723–2733 (2001).

    PubMed  CAS  Google Scholar 

  6. L. A. Mirny, and E. I. Shakhnovich. How to derive a protein folding potential? A new approach to an old problem. J Mol Biol 264:1164–1179 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. A. J. Roger. Studies on the phylogeny and gene structure of early-branching eukaryotes. Ph.D. thesis (1996).

    Google Scholar 

  8. A. Banerjee, and L. T. Kasmala. Differential assembly kinetics of alpha-tubulin isoforms in the presence of paclitaxel. Biochem Biophys Res Commun 245:349–351 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. D. Sept, N. A. Baker, and J. A. McCammon. The physical basis of microtubule structure and stability. Protein Sci 12:2257–2261 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. Ranganathan, D. W. Dexter, C. A. Benetatos, A. E. Chapman, K. D. Tew, and G. R. Hudes. Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res 56:2584–2589 (1996).

    PubMed  CAS  Google Scholar 

  11. B. Liu, E. D. Staren, T. Iwamura, H. E. Appert, and J. M. Howard. Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res 99:179–186 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. M. Hari, H. Yang, C. Zeng, M. Canizales, and F. Cabral. Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 56:45–56 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. S. Mozzetti, C. Ferlini, P. Concolino, F. Filippetti, G. Raspaglio, S. Prislei, D. Gallo, E. Martinelli, F. O. Ranelletti, G. Ferrandina, and G. Scambia. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11:298–305 (2005).

    PubMed  CAS  Google Scholar 

  14. I. A. Khan, and R. F. Luduena. Different effects of vinblastine on the polymerization of isotypically purified tubulins from bovine brain. Invest New Drugs 21:3–13 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. C. A. Burkhart, M. Kavallaris, and S. Band Horwitz. The role of beta-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta 1471:O1–O9 (2001).

    PubMed  CAS  Google Scholar 

  16. S. D. Kopczak, N. A. Haas, P. J. Hussey, C. D. Silflow, and D. P. Snustad. The small genome of Arabidopsis contains at least six expressed alpha-tubulin genes. Plant Cell 4:539–547 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. J. L. Carpenter, S. D. Kopczak, D. P. Snustad, and C. D. Silflow. Semi-constitutive expression of an Arabidopsis thaliana alpha-tubulin gene. Plant Mol Biol 21:937–942 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. D. P. Snustad, N. A. Haas, S. D. Kopczak, and C. D. Silflow. The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell 4:549–556 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. Z. Cheng, D. P. Snustad, and J. V. Carter. Temporal and spatial expression patterns of TUB9, a beta-tubulin gene of Arabidopsis thaliana. Plant Mol Biol 47:389–398 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. M. Yoshikawa, G. Yang, K. Kawaguchi, and S. Komatsu. Expression analyses of beta-tubulin isotype genes in rice. Plant Cell Physiol 44:1202–1207 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. D. J. Whittaker, and B. A. Triplett. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121:181–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. E. Nogales, S. G. Wolf, and K. H. Downing. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199–203 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. C. Chothia, and A. M. Lesk. The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826 (1986).

    PubMed  CAS  Google Scholar 

  24. B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout, and M. Schneider. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. D. G. Higgins, and P. M. Sharp. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. J. Lowe, H. Li, K. H. Downing, and E. Nogales. Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. B. Gigant, P. A. Curmi, C. Martin-Barbey, E. Charbaut, S. Lachkar, L. Lebeau, S. Siavoshian, A. Sobel, and M. Knossow. The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 102:809–816 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. B. Gigant, C. Wang, R. B. Ravelli, F. Roussi, M. O. Steinmetz, P. A. Curmi, A. Sobel, and M. Knossow. Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. J. Lowe, and L. A. Amos. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. R. Sanchez, and A. Sali. Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 143:97–129 (2000).

    PubMed  CAS  Google Scholar 

  31. E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Mod 7:306–317 (2001).

    CAS  Google Scholar 

  32. W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hunenberger, P. Kruger, A. E. Mark, W. R. P. Scott, and I. G. Tironi. Biomolecular simulation: the GROMOS96 manual and user guide (1996).

    Google Scholar 

  33. 33a. M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. 33b. R. Stracke, K. J. Böhm, L. Wollweber, J. A. Tuszynski, and E. Unger. Analysis of the migration behaviour of single microtubules in electric fields. Biochem Biophys Res Commun 293:602–609 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. J. A. Tuszynski, T. Luchko, E. J. Carpenter, and E. Crawford Results of molecular dynamics computations of the structural and electrostatic properties of tubulin and their consequences for microtubules. J Comput Theor Nanosci 1:392–397 (2004).

    Article  CAS  Google Scholar 

  36. J. E. Schoutens. Dipole, dipole interactions in microtubules. J Biol Phys 31:35–55 (2005).

    Article  Google Scholar 

  37. N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. J. C. Kurz, and R. C. J. Williams. Microtubule-associated proteins and the flexibility of microtubules. Biochemistry 34:13374–13380 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. T. Horio, and H. Hotani Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. E. M. Mandelkow, and E. Mandelkow. Microtubule oscillations. Cell Motil Cytoskeleton 22:235–244 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. R. L. Margolis, and L. Wilson. Microtubule treadmills—possible molecular machinery. Nature 293:705–711 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. R. A. Walker, N. K. Pryer, and E. D. Salmon. Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. J Cell Biol 114:73–81 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. Y. Zheng, M. L. Wong, B. Alberts, and T. Mitchison. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378:578–583 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. R. Melki, M. F. Carlier, D. Pantaloni, and S. N. Timasheff. Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28:9143–9152 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. S. Westermann, H. W. Wang, A. Avila-Sakar, D. G. Drubin, E. Nogales, and G. Barnes. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature (2006).

    Google Scholar 

  46. M. Jordan, and L. Wilson. Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327 (1971).

    Article  PubMed  CAS  Google Scholar 

  48. P. B. Schiff, and S. B. Horwitz. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565 (1980).

    Article  PubMed  CAS  Google Scholar 

  49. I. Ringel, and S. B. Horwitz. Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst 83:288–291 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333 (1995).

    PubMed  CAS  Google Scholar 

  51. V. VanBuren, D. J. Odde, and L. Cassimeris. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc Natl Acad Sci U S A 99:6035–6040 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. H. Xiao, P. Verdier-Pinard, N. Fernandez-Fuentes, B. Burd, R. Angeletti, A. Fiser, S. B. Horwitz, and G. A. Orr. Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A 103:10166–10173 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. S. W. James, C. D. Silflow, P. Stroom, and P. A. Lefebvre A. Mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J Cell Sci 106:209–218 (1993).

    PubMed  CAS  Google Scholar 

  54. R. G. Anthony, and P. J. Hussey. Double mutation in Eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 18:669–674 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. E. Yamamoto, and W. V. Baird. Molecular characterization of four beta-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica. Plant Mol Biol 39:45–61 (1999).

    Article  PubMed  CAS  Google Scholar 

  56. A. Makioka, M. Kumagai, H. Ohtomo, S. Kobayashi, and T. Takeuchi. Effect of dinitroaniline herbicides on the growth of Entamoeba histolytica. J Parasitol 86:607–610 (2000).

    PubMed  CAS  Google Scholar 

  57. Y. M. Traub-Cseko, J. M. Ramalho-Ortigao, A. P. Dantas, S. L. de Castro, H. S. Barbosa, and K. H. Downing Dinitroaniline herbicides against protozoan parasites: the case of Trypanosoma cruzi. Trends Parasitol 17:136–141 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. T. J. Stokkermans, J. D. Schwartzman, K. Keenan, N. S. Morrissette, L. G. Tilney, and D. S. Roos. Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 84:355–370 (1996).

    Article  PubMed  CAS  Google Scholar 

  59. M. M. Chan, and D. Fong. Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 249:924–926 (1990).

    Article  PubMed  CAS  Google Scholar 

  60. J. D. Hugdahl, and L. C. Morejohn. Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from zea mays L. Plant Physiol 102:725–740 (1993).

    PubMed  CAS  Google Scholar 

  61. R. B. Ravelli, B. Gigant, P. A. Curmi, I. Jourdain, S. Lachkar, A. Sobel, and M. Knossow. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. R. F. Luduena, and M. C. Roach. Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. Pharmacol Ther 49:133–152 (1991).

    Article  PubMed  Google Scholar 

  63. R. Bai, D. G. Covell, X. F. Pei, J. B. Ewell, N. Y. Nguyen, A. Brossi, and E. Hamel. Mapping the binding site of colchicinoids on beta -tubulin. 2-Chloroacetyl-2-demethylthiocolchicine covalently reacts predominantly with cysteine 239 and secondarily with cysteine 354. J Biol Chem 275:40443–40452 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. A. R. Chaudhuri, P. Seetharamalu, P. M. Schwarz, F. H. Hausheer, and R. F. Luduena. The interaction of the B-ring of colchicine with alpha-tubulin: a novel footprinting approach. J Mol Biol 303:679–692 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. R. J. Toso, M. A. Jordan, K. W. Farrell, B. Matsumoto, and L. Wilson. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32:1285–1293 (1993).

    Article  PubMed  CAS  Google Scholar 

  66. H. W. Wang, and E. Nogales. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435:911–915 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. S. S. Rai, and J. Wolff Localization of the vinblastine-binding site on beta-tubulin. J Biol Chem 271:14707–14711 (1996).

    Article  PubMed  CAS  Google Scholar 

  68. Y. B. Blume, A. Y. Nyporko, A. I. Yemets, and W. V. Baird. Structural modeling of the interaction of plant alpha-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol Int 27:171–174 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. N. S. Morrissette, A. Mitra, D. Sept, and L. D. Sibley. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol Biol Cell 15:1960–1968 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. C. Ma, C. Li, L. Ganesan, J. Oak, S. Tsai, D. Sept, and N. S. Morrissette. Mutations in {alpha}-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol Biol Cell (2007).

    Google Scholar 

  71. J. T. Huzil, R. F. Luduena, and J. Tuszynski. Comparative modelling of human beta-tubulin isotypes and implications for drug binding. Nanotechnology 17:S90–S100 (2006).

    Article  CAS  Google Scholar 

  72. J. Lowe, and L. A. Amos. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18:2364–2371 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Tuszynski, J., Huzil, T., Carpenter, E., LudeÑa, R. (2008). Tubulin Isotypes And Their Role In Microtubule Dynamic Instability, Implications For Modeling And Rational Design Of Inhibitors. In: Blume, Y.B., Baird, W.V., Yemets, A.I., Breviario, D. (eds) The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8843-8_15

Download citation

Publish with us

Policies and ethics