Microbial Communities of Stromatolites

  • Burns P. Brendan
  • Malcolm R. Walter
  • Brett A. Neilan
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 12)

One of the major challenges in science is to identify modern living systems that present unique opportunities to address fundamental questions in fields ranging from microbial ecology, evolution, chemical biology, functional genomics, and biotechnology. Stromatolites represent such a system. One of the earliest pieces of evidence of planetary life is in fact contained in the microfossils of stromatolites. These extant analogues provide an insight into the nature of ancient microbial systems that dominated early life on Earth (McNamara and Awramik, 1992), and may also provide clues as to their resilience over such immense periods of geological time. This review will focus on microfossil evidence from ancient stromatolites, the significant microbial diversity shown in these living systems, and recent results on lipid profiling that link stable chemical signatures with the biotic components in modern stromatolites. We will also discuss throughout how these early life analogues fit into the emerging and exciting field of astrobiology, a multi-disciplinary field of science that allows us to address fundamental questions on our own origins and existence.


Extracellular Polymeric Substance Anoxygenic Phototroph Pilbara Craton Quaternary Carbon Alkane Extant Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M.A. (2006) An astrobiology-focused analysis of microbial mat communities from Hamelin Pool, Shark Bay, Western Australia. Ph.D. thesis, University of New South Wales, Australia.Google Scholar
  2. Allen, M.A., Goh, F., Leuko, S., Echigo, A., Mizuki, T., Usami, R., Kamekura, M., Neilan, B.A., and Burns, B.P. (2008) Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay. Int J Syst Evol Microbiol 58, 798–802.CrossRefGoogle Scholar
  3. Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718.CrossRefADSGoogle Scholar
  4. Al-Qassab, S., Lee, W.J., and Murray, S. (2002) Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozol 41, 91–144.Google Scholar
  5. Altermann, W., Kazmierczak, J., Oren, A., and Wright, D.T. (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4, 147–166.CrossRefGoogle Scholar
  6. Arp, G., Reimer, A., and Reitner, J. (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292, 1701–1704.CrossRefADSGoogle Scholar
  7. Bauld, J., Chambers, L.A., and Skyring, G.W. (1979) Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin Pool, Shark Bay, W.A. Aust J Fresh Res 30, 753–764.CrossRefGoogle Scholar
  8. Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M., and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185, 131–145.CrossRefADSGoogle Scholar
  9. Brasier, D.M., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A., and Grassineau, N.V. (2002) Questioning the evidence of Earth’s oldest fossils. Nature 416, 76–81.CrossRefADSGoogle Scholar
  10. Brocks, J.J, Logan, G.A, Buick, R., and Summons, R.E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036.CrossRefGoogle Scholar
  11. Brocks, J.J., Buick, R., Logan, G.A., and Summons, R.E. (2003) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67, 4321–4335.CrossRefADSGoogle Scholar
  12. Burns, B.P., Goh, F., Allen, M., and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6, 1096–1101.CrossRefGoogle Scholar
  13. Chivas, A.R., Torgersen, T., and Polach, H.A. (1990) Growth rates and Holocene development of stromatolites from Shark Bay, Western Australia. Aust J Earth Sci 37, 113–121.CrossRefGoogle Scholar
  14. Coolen, M.J.L., Hopmans, E.C., Rijpstra, W.I.C., Muyzer, G., Schouten, S., Volkman, J.K., and Damste, J.S.S. (2004) Evolution of the methane cycles in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35, 1151–1167.CrossRefGoogle Scholar
  15. Cranwell, P.A. (1986) Esters of acrylic and polycyclic isoprenoid alcohols: biochemical markers in lacustrine sediments. Org Geochem 10, 891–896.CrossRefGoogle Scholar
  16. Decho, A.W., Visscher, P.T., and Reid, R.P. (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeocl 219, 71–86.CrossRefGoogle Scholar
  17. Des Marais, D.J., Harwit, M.O., and Jucks, K.W. (2002) Remote sensing of planetary properties and biosignatures of extrasolar terrestrial planets. Astrobiology 2, 153–181.CrossRefADSGoogle Scholar
  18. Des Marais, D. (2003) Bigeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biospehere. Biol Bull 204, 160–167.CrossRefGoogle Scholar
  19. Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13, 429–438.Google Scholar
  20. Eggleston, J.R. and Dean, W.E. (1976) Freshwater stromatolitic bioherms in Green Lake, New York. In Walter, M.R. (ed.), Stromatolites. Elsevier Scientific, Amsterdam, pp. 479–488.CrossRefGoogle Scholar
  21. Goh, F., Leuko, S., Allen, M.A., and Burns, B.P. (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56, 1323–1329.CrossRefGoogle Scholar
  22. Grotzinger, J.P. (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In Controls on Carbonate Platform and Basin Development. Society of Economic Paleontologists and Mineralogists Special Publication 44, pp. 79–106.Google Scholar
  23. Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27, 313–358.CrossRefADSGoogle Scholar
  24. Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412, 324–327.CrossRefADSGoogle Scholar
  25. Hofmann, H.J. (1976) Precambrian microflora, Belcher Island, Canada: significance and systematics. J Paleontol 50, 1040–1073.Google Scholar
  26. Javor, B.J. (1988) CO2 fixation in halobacteria. Arch Microbiol 149, 433–440.CrossRefGoogle Scholar
  27. Kakegawa, T. and Nanri, H. (2006) Sulfur and carbon isotope analyses of 2.7 Ga stromatolites, cherts and sandstones in the Jeerinah Formation, Western Australia. Precambrian Res 148, 115–124.CrossRefGoogle Scholar
  28. Kawaguchi, T. and Decho, A.W. (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240, 230–235.CrossRefADSGoogle Scholar
  29. Kazmierczak, J. and Kempe, S. (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou Island, Tonga. Naturwissenschaften 93, 119–126.CrossRefADSGoogle Scholar
  30. Kenig, F., Simons, D.J.H., and Crich, D. (2003) Branched aliphatic alkanes with quarternary substituted carbon atoms in modern and ancient geological samples. Proc Natl Acad Sci USA 100, 12554–12558.CrossRefADSGoogle Scholar
  31. Kühl, M. and Larkum, A.W.D. (2002) The microenvironment and photosynthetic performance of Prochloron sp. in symbiosis with didemnid ascidians. In Seckbach, J. (ed.), Cellular Origin and Life in Extreme Habitats. Kluwer, Dordrecht, Vol. 3, pp. 273–290.Google Scholar
  32. Logan, B.W. (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J Geol 69, 517–533.CrossRefADSGoogle Scholar
  33. Logan, B.W., Hoffman, P., and Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Petr Geol, Mem 22, 140–194.Google Scholar
  34. López-Cortés, A. (1999) Paleobiological significance of hydrophobicity and adhesion of phototrophic bacteria from microbial mats. Precambrian Res 96, 25–39.CrossRefGoogle Scholar
  35. Lowe, D.R. and Tice, M.M. (2007) Tectonic controls on atmospheric, climatic, and biological evolution 3.5–2.4Ga. Precambrian Res 158, 177–197.CrossRefGoogle Scholar
  36. Macintyre, I.G., Prufert-Bebout, L., and Reid, R.P. (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47, 915–921.CrossRefGoogle Scholar
  37. McNamara, K.J. and Awramik, S.M. (1992) Stromatolites: a key to understanding the early evolution of life. Sci Prog Oxford 76, 345–364.Google Scholar
  38. Moore, L.S. (1987) Water chemistry of the coastal saline lakes of the Clifton-Preston Lakeland System, South-western Australia, and its influence on stromatolite formation. Aust J Mar Fresh Res 38, 647–660.CrossRefGoogle Scholar
  39. Nisbet, E.G. and Fowler, C.M.R. (1999) Archaean metabolic evolution of microbial mats. Proc Roy Soc Lond 266, 2375–2382.CrossRefGoogle Scholar
  40. Palmisano, A.C., Summons, R.E., and Cronin, S.E. (1989) Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia. J Phycol 25, 655–661.CrossRefGoogle Scholar
  41. Papineau, D., Walker, J.J., and Mojzsis, S.J. (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71, 4822–4832.CrossRefGoogle Scholar
  42. Pinckney, J., Paerl, H.W. and Reid, R.P. (1995) Ecophysiology of stromatolitic microbial mats, Stocking Island, Exuma Cays, Bahamas. Microbial Ecol 29, 19–37.CrossRefGoogle Scholar
  43. Reid, R.P., Visscher, P.T., and Decho, A.W. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–992.CrossRefADSGoogle Scholar
  44. Reid, R.P., Visscher, A.W., and Decho, A.W. (2003) Shark Bay stromatolites: microfabrics and reintrepretation of origins. Fades 49, 299–324.Google Scholar
  45. Schopf, J.W., Kuryavtsev, A.B., and Agresti, D.G. (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73–76.CrossRefADSGoogle Scholar
  46. Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., and Tripathi, B. (2007) Evidence of Archean life: stromatolites and microfossils, Precambrian Res 158, 141–155.CrossRefGoogle Scholar
  47. Schultze-Lam, S., Harauz, G., and Beveridge, T.J. (1992) Participation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174, 7971–7981.Google Scholar
  48. Summons, R.E., Jahnke, L.L., and Hope, J.M. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557.CrossRefADSGoogle Scholar
  49. van Kranendonk, M.J. (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Sci Rev 74, 197–240.CrossRefADSGoogle Scholar
  50. Visscher, P.T., Reid, R.P., and Bebout, B.M. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): The role of sulfur cycling. Am Mineral 83, 1482–1493.Google Scholar
  51. Walter, M.R. (1983) Archean stromatolites: evidence of the Earth’s earliest benthos. In Schopf, J.W. (ed.), The Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ, Chapter 8, pp. 187–213.Google Scholar
  52. Walter, M.R., Bauld, J., and Brock, T.D. (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerritta) from hot springs in Yellowstone National Park. In Walter, M.R. (ed.), Stromatolites. Elsevier Scientific, Amsterdam, pp. 273–310.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Australian Centre for AstrobiologySchool of Biotechnology and Biomolecular Sciences and the University of New South WalesAustralia

Personalised recommendations