Skip to main content

Preservation Windows for Paleobiological Traces in the Mars Geological Record

  • Chapter
From Fossils to Astrobiology

For years, the Mars robotic missions have provided different evidences that Mars had an active hydrologic past which involved the emergence of distinctive sedimentary systems and its corresponding weathering sources. Minor geomorphic features to regional-scaled structures have been used to inferthat sedimentary systems such as deltaic, fluvial, lacustrine or marine-like environments (Malin and Edgett, 2000) to have occurred sometimes in Mar’s history (Carr, 2006). In this context, the information obtained by geomorphological interpretations have inferred those physical conditions — e.g. hydrological activity, water energy or climatic evolution-that were in equilibrium with the landforms (Baker, 2001). In recent times, new instrumentation aboard the different planetary missions to Mars (e.g. IR specs in the Mars Oddyssey, Mars Express and MRO, or APXR and Mössbauer specs of MERs) have shed light in the mineralogical and geochemical composition of some ancient materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amils R., Gonzalez-Toril E., Fernandez-Remolar D., Gomez F., Aguilera A., Rodriguez N., Malki M., Garcia-Moyano A., Fairen A. G., de la Fuente V., and Luis Sanz J. (2007) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet. Space Sci.55(3), 370–381.

    Article  ADS  Google Scholar 

  • Aubrey A., Cleaves H. J., Chalmers J. H., Skelley A. M., Mathies R. A., Grunthaner F. J., Ehrenfreund P., and Bada J. L. (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5), 357–360.

    Article  ADS  Google Scholar 

  • Baker V. R. (2001) Water and the martian landscape. Nature 412, 228–236.

    Article  ADS  Google Scholar 

  • Bandfield J. L., Glotch T. D. and Christensen P. R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084–1087.

    Article  ADS  Google Scholar 

  • Banfield J. F., Tyson G. W., Allen E. E., and Whitaker R. J. (2005) The search for a molecular-level understanding of the processes that underpin the Earth’s biogeochemical cycles. In: J. L. Bandfield, J. Cervini-Silva, and K. H. Nealson (eds) Molecular geomicrobiology. Rev. Miner. Geochem. Mineralogical Society of America, Washington Vol. 59, pp. 1–7.

    Chapter  Google Scholar 

  • Benison K. C. (2006) A martian analog in Kansas: comparing martian strata with Permian acid saline lake deposits. Geology 34(5), 385–388.

    Article  ADS  Google Scholar 

  • Benison K. C. and LaClair D. A. (2003) Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? Astrobiology 3(3), 609–618.

    Article  ADS  Google Scholar 

  • Bibring J.-P., Langevin Y., Mustard J. F., Poulet F., Arvidson R., Gendrin A., Gondet B., Mangold N., Pinet P., Forget F., the OMEGA team, Berthe M., Gomez C., Jouglet D., Soufflot A., Vincendon M., Combes M., Drossart P., Encrenaz T., Fouchet T., Merchiorri R., Belluci G., Altieri F., Formisano V., Capaccioni F., Cerroni P., Coradini A., Fonti S., Korablev O., Kottsov V., Ignatiev N., Moroz V., Titov D., Zasova L., Loiseau D., Pinet P., Doute S., Schmitt B., Sotin C., Hauber E., Hoffmann H., Jaumann R., Keller U., Arvidson R., Duxbury T., Forget F, and Neukum G. (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express Data. Science 312(5772), 400–404.

    Article  ADS  Google Scholar 

  • Blowes D. W., Ptacek C. J., Jambor J. L., and Weisener C. G (2005) The geochemistry of acid mine drainage. In: Environmental geochemistry B. S. Lollar (ed.) Treatise on geochemistry H. D. Holland and K. K. Turekian (eds.), Vol. 9. Elsevier, Oxford, pp. 149–204.

    Google Scholar 

  • Brake S. S., Hasiotis S. T., Dannelly H. K., and Connors K. A. (2002) Eukaryotic stromatolite builders in acid mine drainage: implications for Precambrian iron formations and oxygenation of the atmosphere? Geology Amsterdam 30(7), 599–602.

    Article  ADS  Google Scholar 

  • Brasier M. D. (1992) Paleoceanography and changes in the biological cycling of phosphorous across the Precambrian-Cambrian Boundary. In: J. H. Lipps and P. W. Signor (eds.) Origin and evolution of the Metazoa. Plenum, New York, pp. 483–523.

    Google Scholar 

  • Bridges J. C., Catling D. C., Saxton J. M., Swindle T. D., Lyon I. C., and Grady M. M. (2001) Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392.

    Article  ADS  Google Scholar 

  • Brocks J. J. and Summons R. E. (2005) Sedimentary hydrocarbons, biomarkers for Early Life. In: W. H. Schlesinger (ed.) Biogeochemistry. Vol. 8. Elsevier. Amsterdam pp. 63–115.

    Google Scholar 

  • Cabrol N. A. and Grin E. A. (2001) The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant?. Icarus 149, 291–328.

    Article  ADS  Google Scholar 

  • Carr M. (2006) The surface of Mars. Cambridge University Press, Cambridge, 307 p.

    Book  Google Scholar 

  • Conway Morris S. (1990) Taphonomy of fossil-lagerstätten: Burguess Shale. In: D. E. G. Briggs and P. R. Crowther (eds.) Palaeobiology: a synthesis. Blackwell Science, Oxford, pp. 270–274.

    Google Scholar 

  • Corcoran P. L. and Mueller W. U. (2004) Aggressive Archaean weathering. In: P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu (eds.) The Precambriam Earth: tempos and events. Elsevier, Amsterdam pp. 494–504.

    Google Scholar 

  • Davis R. A., Welty A. T., Borrego J., Morales J. A., Pendon J. G., and Ryan J. G. (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Env. Geol. 39(10), 1107–1116.

    Article  Google Scholar 

  • Dorn R. I. and Dickinson W. R. (1989) First paleonvironmental interpretation of a pre-Quaternary rock varnish site, Davidson Canyon, southern Arizona. Geology 17, 1029–1031.

    Article  ADS  Google Scholar 

  • Eglinton G. and Logan G. A. (1991) Molecular preservation. Phil. Trans. Roy. Soc. London, Series B, Biol. Scien., 333(1268), 315–328.

    Article  ADS  Google Scholar 

  • Farmer J. and Des Marais D. J. (1999) Exploring for a record of ancient martian life. J. Geophys. Res. 104(E11), 26977–26995.

    Article  ADS  Google Scholar 

  • Fasset C. I. and Head III J. W. (2005) Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nilli Fossae region. Geophys. Res. Let. 32, doi: 10.1029/2005GL023456.

    Google Scholar 

  • Fedo C. M. (2000) Setting and origin for problematic rocks from the >3.7Ga Isua Greenstone Belt, southern west Greenland: Earth’s oldest coarse clastic sediments. Precambrian Res. 101(1), 69–78.

    Article  Google Scholar 

  • Fernández-López S. (1991) Taphonomic concepts for a theoretical biochronology. Rev. Esp. Paleont. 6(1), 37–49.

    Google Scholar 

  • Fernández-López S. (1995) Taphnomie et interprétation des paléoenvironnements. Geobios 18, 137–154.

    Article  Google Scholar 

  • Fernández-López S. (2007) Ammonoid taphonomy, palaeoenvironments and sequence stratigraphy at the Bajocian/Bathonian boundary on the Bas Auran area (Subalpine Basin, south-eastern France). Lethaia 40, 377–391.

    Article  Google Scholar 

  • Fernández-Remolar D. C. and Knoll A. H. (2008) Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: implications for Mars exploration. Icarus 194, 72–95.

    Article  ADS  Google Scholar 

  • Fernández-Remolar D. C., Morris R. V., Gruener J. E., Amils R., and Knoll A. H. (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 149–167.

    Article  ADS  Google Scholar 

  • Fernández-Remolar D. C., Menor Salván C., Ruíz Bermejo M., and Knoll A. H. (2007) The fate of biological materials in acidic environments of the Rio Tinto, southwestern Spain. In: J. Seckbach (ed.) Algae and cyanobacteria in extreme environments. COLE Series. Vol. 11. Springer, Dordrecht pp. 697–710.

    Chapter  Google Scholar 

  • Fernández Remolar D. C., Gomez F., Prieto-Ballesteros O., Schelble R. T., Rodríguez N., and Amils R. (2008a) Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system. Astrobiology 8(1), 157–173.

    Article  ADS  Google Scholar 

  • Fernández-Remolar D. C., Prieto-Ballesteros O., Rodríguez N., Gómez F., Amils R., Gómez-Elvira J., and Stoker C. (2008b) Underground habitats found in the Río Tinto Basin: an approach to Mars subsurface life exploration. Astrobiology 8, in press.

    Google Scholar 

  • Fernández-Remolar D. C., Menor-Salván C., and Ruíz-Bermejo M. (2008c) Differential preservation of biological information under the global acidic conditions of Mars, an approach from the Río Tinto Mars analog and its implications for searching extinct on Mars. 39 Lunar and Planetery Science Conference, paper 1890.

    Google Scholar 

  • Franck S., Kossacki K., and Bounama C. (1999) Modelling the global carbon cycle for the past and future evolution of the earth system. Chem. Geol. 159(1–4), 305–317.

    Article  Google Scholar 

  • Francois L. M. and Walker J. C. G. (1992) Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic of sea water. Am. J. Sci. 292, 81–135.

    Article  Google Scholar 

  • Giorgetti G. and Baroni C. (2007) High-resolution analysis of silica and sulphate-rich rock varnishes from Victoria Land (Antarctica). Eur. J. Mineral. 19(3), 381–389.

    Article  Google Scholar 

  • Golubic S. and Schneider J. (2003) Microbial endoliths as internal biofilms. In: W. E. Krumbein, D. M. Paterson, and G. A. Zavarzin (eds.) Fossils and recent biofilms: a natural history of Life on Earth. Kluwer, Dordrecht pp. 249–263.

    Google Scholar 

  • Gómez F., Fernández-Remolar D., González-Toril E. F., and Amils R. (2004) The Tinto River, an extreme Gaian environment. In: L. Margulis, J. Miller, P. Boston, S. Schneider, and E. Crist (eds.) Scientist on Gaia 2000. MIT Press, Cambridge (USA) pp. 321–334.

    Google Scholar 

  • Grady M. M. and Wright I. (2006) The carbon cycle on early Earth and on Mars? Phil. Trans. Roy. Soc. B 361, 1703–1713.

    Article  Google Scholar 

  • Grant J. A., Irwin R. P., Grotzinger J. P., Milliken R. E., Tornabene L. L., McEwen A. S., Weitz C. M., Squyres S. W., Glotch T. D., Thomson B. J., and HiRISE Team (2007) Impact and Aqueous Stratigraphy in Holden Crater as Revealed by HiRISE. Seventh International Conference Mars, paper 3229.

    Google Scholar 

  • Grasby S. E., Allen C. C., Longazo T. G., Lisle J. T., Griffin D. W., and Beauchamp B. (2003) Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic-signs of life beneath the ice. Astrobiology 3(3), 583–596.

    Article  ADS  Google Scholar 

  • Grotzinger J. P. (1994) Trends in Precambrian carbonate sediments and their implication to understanding evolution. In: S. Bengtson (ed.) Early Life on Earth, Nobel Symposium. Vol. 84. Columbia University Press, New York pp. 245–258.

    Google Scholar 

  • Grotzinger J. P., Arvidson R. E., Bell III J. F, Calvin W., Clark B. C., Fike D. A., Golombek M., Greeley R., Haldemann A., and Herkenhoff K. E. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240(1), 11–72.

    Article  ADS  Google Scholar 

  • Hamade T., Konhauser K. O., Raiswell R., Goldsmith S., and Morris R. C. (2003) Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology 31(1), 35–38.

    Article  ADS  Google Scholar 

  • Haskin L. A., Wang A., Jolliff B. L., McSween H. Y., Clark B. C., Des Marais D. J., McLennan S. M., Tosca N. J., Hurowitz J. A., Farmer J. D., Yen A., Squyres S. W., Arvidson R. E., Klingelhofer G., Schroder C., de Souza P. A., Ming D. W., Geliert R., Zipfel J., Bruckner J., Bell J. F., Herkenhoff K., Christensen P. R., Ruff S., Blaney D., Gorevan S., Cabrol N. A., Crumpler L., Grant J., and Soderblom L. (2005) Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436(7047), 66–69.

    Article  ADS  Google Scholar 

  • Hessler A. M. and Lowe D. R. (2006) Weathering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 151(3–4), 185–210.

    Article  Google Scholar 

  • Jones B., Renaut R. W., and Rosen M. R. (2001) Taphonomy of silicified filamentous microbes in modern geothermal sinters — Implications for identification. PALAIOS 16(6), 580–592.

    Google Scholar 

  • Kazue T. (1999) Architecture of biomats reveals history of geo-, aqua-, and bio-systems. Episodes 22(1), 21–25.

    Google Scholar 

  • Kiyokawa S., Ito T., Ikehara M., and Kitajima F. (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixo Island Formation, coastal Pilabara terrane, Australia. GSA Bull. 118(1/2), 3–22

    Article  Google Scholar 

  • Kuhlman K. R., Fusco W. G., La Dua M. T., Allenbach L. B., Ball C. L., Kuhlman G. M., Anderson R. C., Erickson I. K., Stuecker T., Benardini J., Strap J. L., and Crawford R. L. (2006) Diversity of Microorganisms within Rock Varnish in the Whipple Mountains, California. App. Env. Microbiol. 72(2), 1708–1715.

    Article  Google Scholar 

  • Kuhlman K. R. and McKay C. P. (2007) Occurrence of rock varnish at Yungay, Atacama desert, Chile. 38 Lunar and Planetery Science Conference, paper 2251.

    Google Scholar 

  • Leistel J. M., Marcoux E., Thiéblemont D., Quesada C., Sánchez A., Almodovar G. R., Pascual E., and Sáez R. (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner Dep. 33(2), 2–30.

    Article  Google Scholar 

  • Lewis A. J., Palmer M. R., Sturchio N. C., and Kemp A. J. (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 61(4), 695–706.

    Article  ADS  Google Scholar 

  • Liu T. and Broecker W. S. (2000) How fast does rock varnish grow? Geology 28(2), 183–186.

    Article  ADS  Google Scholar 

  • Logan G., Boon J., and Eglinton G. (1993) Structural Biopolymer Preservation in Miocene Leaf Fossils from the Clarkia Site, Northern Idaho. Proc. Nat. Acad. Sci. 90(6), 2246–2250.

    Article  ADS  Google Scholar 

  • Malin M. C. and Edgett K. S. (2000) Sedimentary rocks of Early Mars. Science 290(5498), 1927–1937.

    Article  ADS  Google Scholar 

  • Michalski J. R. and Noe Dobrea E. Z. (2007) Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 951–954.

    Article  ADS  Google Scholar 

  • Moore J. M. and Clague D. A. (2004) Hawaiian submarine manganese-iron oxide crusts — A dating tool? GSA Bull. 116(3/4), 337–347.

    Article  Google Scholar 

  • Moreno C., Capitán M. A., Doyle M., Nieto J. M., Ruiz F., and Sáez R. (2003) Edad mínima del gossan de Las Cruces: implicaciones sobre la edad de inicio de los ecosistemas extremos en la Faja Piritica Ibérica. Geogaceta 33, 75–78.

    Google Scholar 

  • Morris R. V., Klingelhofer G., Bernhardt B., Schroder C., Rodionov D. S., de Souza P. A., Jr., Yen A., Geliert R., Evlanov E. N, Foh J., Kankeleit E., Gutlich P., Ming D. W., Renz F., Wdowiak T., Squyres S. W., and Arvidson R. E. (2004) Mineralogy at Gusev Crater from the Mossbauer Spectrometer on the Spirit Rover. Science 305(5685), 833–836.

    Article  ADS  Google Scholar 

  • Noffke N., Eriksson K. A., Hazen R. M., and Simpson E. L. (2006) A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4), 253–256.

    Article  ADS  Google Scholar 

  • Ohmoto H. (2004) The Archaean atmosphere, hydrosphere and biosphere. In: P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu (eds.) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp. 361–388.

    Google Scholar 

  • Orr J. C., Fabry V. J., Aumont O., Bopp L., Doney S. C., Feely R. A., Gnanadesikan A., Gruber N., Ishida A., Joos F., Key R. M., Lindsay K., Maier-Reimer E., Matear R., Monfray P., Mouchet A., Najjar R. G., Plattner G.-K., Rodgers K. B., Sabine C. L., Sarmiento J. L., Schlitzer R., Slater R. D., Totterdell I. J., Weirig M.-F., Yamanaka Y., and Yool A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059), 681–686.

    Article  ADS  Google Scholar 

  • Perry R. S., Lynne B. Y., Sephton M. A., Kolb V. M., Perry C. C., and Staley J. T. (2006) Baking black opal in the desert sun: the importance of silica in desert varnish. Geology 34(7), 537–540.

    Article  ADS  Google Scholar 

  • Potter R. M. and Rossman G. R. (1977) Desert varnish: the importance of clay minerals. Science 196(4297), 1446–1448.

    Article  ADS  Google Scholar 

  • Poulet F., Bibring J.-P., Mustard J. F., Gendrin A., Mangold N., Langevin Y., Arvidson R. E., Gondet B., and Gomez C. (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438(7068), 623–627.

    Article  ADS  Google Scholar 

  • Rosing M. T., Rose N. M., Bridgwater D., and Thomsen H. S. (1996) Earliest part of earth’s stratigraphic record: a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24(1), 43–46.

    Article  ADS  Google Scholar 

  • Schiffman P., Zierenberg R. A., Marks N., Bishop J. L., and Dyar M. D. (2006) Acid-fog deposition at Kilauea volcano: a possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 34(11), 921–924.

    Article  ADS  Google Scholar 

  • Schinteie R., Campbell K. A., and Browne P. R. L. (2007) Microfacies of stromatolitic sinter fromk acid-sulphate-chloride springs at Parakiri Stream, Rotokawa Geothermal Field, New Zealand. Palaeont. Electron. 10(1), 4A, 33.

    Google Scholar 

  • Schulze-Makuch D., Dohm J. M., Fan C., Fairen A. G., Rodriguez J. A. P., Baker V. R., and Fink W. (2007) Exploration of hydrothermal targets on Mars. Icarus 189(2), 308–324.

    Article  ADS  Google Scholar 

  • Seilacher A. (1990) Taphonomy of Fossil lagerstätten: Overview. In: D. E. G Briggs and P. R. Crowther (eds.) Palaeobiology: a synthesys. Blackwell Science, Oxford pp. 266–270.

    Google Scholar 

  • Sinninghe Damsté J. S. and De Leeuw J. W. (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org. Geochem. 16(4–6), 1077–1101.

    Article  Google Scholar 

  • Squyres S. W., Grotzinger J. P., Arvidson R. E., Bell J. F, III, Calvin W., Christensen P. R., Clark B. C., Crisp J. A., Farrand W. H., Herkenhoff K. E., Johnson J. R., Klingelhofer G., Knoll A. H., McLennan S. M., McSween H. Y., Jr., Morris R. V., Rice J. W., Jr., Rieder R., and Soderblom L. A. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306(5702), 1709–1714.

    Article  ADS  Google Scholar 

  • Varnes E. S., Jakosky B. M., and McCollom T. M. (2003) Biological potential of martian hydrothermal systems. Astrobiology 3(2), 407–414.

    Article  ADS  Google Scholar 

  • Walker J. J., Spear J. R., and Pace N. R. (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434(7036), 1011–1014.

    Article  ADS  Google Scholar 

  • Walsh M. M. and Westall F. (2003) Archean biofilms preserved in the Swaziland supergroup, South Africa. In: W. E. Krumbein, D. M. Paterson, and G. A. Zarvarzin (eds.) Fossil and recent biofilms: a natural history of Life on Earth. Kluwer, Dordrecht pp. 307–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Fernández-Remolar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Fernández-Remolar, D.C. et al. (2009). Preservation Windows for Paleobiological Traces in the Mars Geological Record. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_25

Download citation

Publish with us

Policies and ethics