Signalling Pathways Controlling Fatty Acid Desaturation

  • María Cecilia Mansilla
  • Claudia E. Banchio
  • Diego de Mendoza
Part of the Subcellular Biochemistry book series (SCBI, volume 49)

Abstract

Microorganisms, plants and animals regulate the synthesis of unsaturated fatty acids (UFAs) during changing environmental conditions as well as in response to nutrients. Unsaturation of fatty acid chains has important structural roles in cell membranes: a proper ratio of saturated to UFAs contributes to membrane fluidity. Alterations in this ratio have been implicated in various disease states including cardiovascular diseases, immune disorders, cancer and obesity. They are also the major components of triglycerides and intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediates fever, inflammation and neurotransmission. UFAs homeostasis in many organisms is achieved by feedback regulation of fatty acid desaturases gene transcription. Here, we review recently discovered components and mechanisms of the regulatory machinery governing the transcription of fatty acid desaturases in bacteria, yeast and animals.

Keywords

Desaturase Gene regulation Membrane fluidity Signal transduction Unsaturated fatty acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, P.S., Cronan, J.E., Jr. and de Mendoza, D. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol, 180 (1998) 2194–2200.PubMedGoogle Scholar
  2. Aguilar, P.S., Lopez, P. and de Mendoza, D. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol, 181 (1999) 7028–7033.PubMedGoogle Scholar
  3. Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C. and de Mendoza, D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J, 20 (2001)1681–1691.PubMedCrossRefGoogle Scholar
  4. Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shigeta, S., Ono, K. and Suzuki, O. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem Biophys Res Commun, 255 (1999) 575–579.PubMedCrossRefGoogle Scholar
  5. Al-Fageeh, M.B. and Smales, C.M. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J, 397(2006) 247–259.PubMedCrossRefGoogle Scholar
  6. Albanesi, D., Mansilla, M.C. and de Mendoza, D. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol, 186 (2004) 2655–2663.PubMedCrossRefGoogle Scholar
  7. Altabe, S.G., Aguilar, P., Caballero, G.M. and de Mendoza, D. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J Bacteriol, 185 (2003) 3228–3231.PubMedCrossRefGoogle Scholar
  8. Beatty, A.L., Malloy, J.L. and Wright, J.R. Pseudomonas aeruginosa degrades pulmonary surfactant and increases conversion in vitro. Am J Respir Cell Mol Biol, 32 (2005)128–134.PubMedCrossRefGoogle Scholar
  9. Beckering, C.L., Steil, L., Weber, M.H., Volker, U. and Marahiel, M.A. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol, 184 (2002) 6395–6402.PubMedCrossRefGoogle Scholar
  10. Bloch, K. The biological synthesis of unsaturated fatty acids. Biochem Soc Symp, 24 (1963) 1–16.PubMedGoogle Scholar
  11. Bossie, M.A. and Martin, C.E. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J Bacteriol, 171 (1989) 6409–6413.PubMedGoogle Scholar
  12. Brown, M.S. and Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A, 96 (1999) 11041–11048.PubMedCrossRefGoogle Scholar
  13. Burr, G.O. The essential fatty acids fifty years ago. Prog Lipid Res, 20 (1981) xxvii–xxix.PubMedCrossRefGoogle Scholar
  14. Clarke, S.D. and Jump, D.B. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr, 14 (1994) 83–98.PubMedCrossRefGoogle Scholar
  15. Cohen, P., Miyazaki, M., Socci, N.D., Hagge-Greenberg, A., Liedtke, W., Soukas, A.A., Sharma, R., Hudgins, L.C., Ntambi, J.M. and Friedman, J.M. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science, 297 (2002) 240–243.PubMedCrossRefGoogle Scholar
  16. Cronan, J.E., Jr. and Gelmann, E.P. An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J Biol Chem, 248 (1973) 1188–1195.PubMedGoogle Scholar
  17. Cybulski, L.E., Albanesi, D., Mansilla, M.C., Altabe, S., Aguilar, P.S. and de Mendoza, D. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol, 45 (2002) 1379–1388.PubMedCrossRefGoogle Scholar
  18. Cybulski, L.E., del Solar, G., Craig, P.O., Espinosa, M. and de Mendoza, D. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem, 279 (2004) 39340–39347.PubMedCrossRefGoogle Scholar
  19. Chellappa, R., Kandasamy, P., Oh, C.S., Jiang, Y., Vemula, M. and Martin, C.E. The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J Biol Chem, 276 (2001) 43548–43556.PubMedCrossRefGoogle Scholar
  20. Chin, J. and Chang, T.Y. Further characterization of a Chinese hamster ovary cell mutant requiring cholesterol and unsaturated fatty acid for growth. Biochemistry, 21 (1982) 3196–3202.PubMedCrossRefGoogle Scholar
  21. Cho, H.P., Nakamura, M. and Clarke, S.D. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem, 274 (1999a) 37335–37339.CrossRefGoogle Scholar
  22. Cho, H.P., Nakamura, M.T. and Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem (1999b) 274, 471–477.CrossRefGoogle Scholar
  23. DeWillie, J.W. and S.J. Farmer. Postnatal dietary fat influences mRNAs involved in mylenation. Dev Neurosci.14 (1992) 61–68CrossRefGoogle Scholar
  24. Diaz, A.R., Mansilla, M.C., Vila, A.J. and de Mendoza, D. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J Biol Chem, 277 (2002) 48099–48106.PubMedCrossRefGoogle Scholar
  25. Dobrosotskaya, I.Y., Seegmiller, A.C., Brown, M.S., Goldstein, J.L. and Rawson, R.B. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science, 296 (2002) 879–883.PubMedCrossRefGoogle Scholar
  26. Enoch, H.G., Catala, A. and Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem, 251 (1976) 5095–5103.PubMedGoogle Scholar
  27. Ericsson, J., Usheva, A. and Edwards, P.A. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J Biol Chem, 274 (1999) 14508–14513.PubMedCrossRefGoogle Scholar
  28. Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Liepvre, X., Berthelier-Lubrano, C., Spiegelman, B., Kim, J.B., Ferre, P. and Foufelle, F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol, 19 (1999) 3760–3768.PubMedGoogle Scholar
  29. Forman, B.M., Chen, J. and Evans, R.M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A, 94 (1997) 4312–4317.PubMedCrossRefGoogle Scholar
  30. Fujiwara, D., Yoshimoto, H., Sone, H., Harashima, S. and Tamai, Y. Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14 (1998), 711–721.PubMedCrossRefGoogle Scholar
  31. Fulco, A.J. The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J Biol Chem, 244 (1969) 889–895.PubMedGoogle Scholar
  32. Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294 (2001) 1871–1875.PubMedCrossRefGoogle Scholar
  33. Goldstein, J.L., DeBose-Boyd, R.A. and Brown, M.S. Protein sensors for membrane sterols. Cell, 124 (2006) 35–46.PubMedCrossRefGoogle Scholar
  34. Gonzalez, C.I. and Martin, C.E. Fatty acid-responsive control of mRNA stability. Unsaturated fatty acid-induced degradation of the Saccharomyces OLE1 transcript. J Biol Chem, 271 (1996) 25801–25809.PubMedCrossRefGoogle Scholar
  35. Grau, R. and de Mendoza, D. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol, 8 (1993) 535–542.PubMedCrossRefGoogle Scholar
  36. Hannah, V.C., Ou, J., Luong, A., Goldstein, J.L. and Brown, M.S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem, 276 (2001) 4365–4372.PubMedCrossRefGoogle Scholar
  37. Hazel, J.R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol, 57 (1995) 19–42.PubMedGoogle Scholar
  38. Heird, W.C. and Lapillonne, A. The role of essential fatty acids in development. Annu Rev Nutr, 25 (2005) 549–571.PubMedCrossRefGoogle Scholar
  39. Higashi, S. and Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol, 102 (1993) 1275–1278.PubMedGoogle Scholar
  40. Hitchcock, A.L., Krebber, H., Frietze, S., Lin, A., Latterich, M. and Silver, P.A. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell, 12 (2001) 3226–3241.PubMedGoogle Scholar
  41. Holloway, C.T. and Holloway, P.W. Stearyl coenzyme a desaturase activity in mouse liver microsomes of varying lipid composition. Arch Biochem Biophys, 167 (1975) 496–504.PubMedCrossRefGoogle Scholar
  42. Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H.D. and Jentsch, S. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell, 102 (2000) 577–586.PubMedCrossRefGoogle Scholar
  43. Horton, J.D., Goldstein, J.L. and Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109 (2002) 1125–1131.PubMedGoogle Scholar
  44. Jeffcoat, R. and James, A.T. The control of stearoyl-CoA desaturase by dietary linoleic acid. FEBS Lett, 85 (1978) 114–118.PubMedCrossRefGoogle Scholar
  45. Jiang, Y., Vasconcelles, M.J., Wretzel, S., Light, A., Gilooly, L., McDaid, K., Oh, C.S., Martin, C.E. and Goldberg, M.A. Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression. Eukaryot Cell, 1 (2002) 481–490.PubMedCrossRefGoogle Scholar
  46. Jiang, Y., Vasconcelles, M.J., Wretzel, S., Light, A., Martin, C.E. and Goldberg, M.A. MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol, 21 (2001) 6161–6169.PubMedCrossRefGoogle Scholar
  47. Jones, B.H., Maher, M.A., Banz, W.J., Zemel, M.B., Whelan, J., Smith, P.J. and Moustaid, N. Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol, 271 (1996) E44–49.PubMedGoogle Scholar
  48. Kaestner, K.H., Ntambi, J.M., Kelly, T.J., Jr. and Lane, M.D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 264 (1989) 14755–14761.PubMedGoogle Scholar
  49. Kandasamy, P., Vemula, M., Oh, C.S., Chellappa, R. and Martin, C.E. Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem, 279 (2004) 36586–36592.PubMedCrossRefGoogle Scholar
  50. Kaneda, T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev, 55 (1991) 288–302.PubMedGoogle Scholar
  51. Kanesaki, Y., Suzuki, I., Allakhverdiev, S.I., Mikami, K. and Murata, N. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun, 290 (2002) 339–348.PubMedCrossRefGoogle Scholar
  52. Kanesaki, Y., Yamamoto, H., Paithoonrangsarid, K., Shoumskaya, M., Suzuki, I., Hayashi, H. and Murata, N. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium Synechocystis sp. PCC 6803. Plant J, 49 (2007) 313–324.PubMedCrossRefGoogle Scholar
  53. Kang, J.X. and Leaf, A. Antiarrhythmic effects of polyunsaturated fatty acids. Recent studies. Circulation, 94 (1996)1774–1780.PubMedGoogle Scholar
  54. Kawashima, Y., Hanioka, N., Matsumura, M. and Kozuka, H. Induction of microsomal stearoyl-CoA desaturation by the administration of various peroxisome proliferators. Biochim Biophys Acta, 752 (1983) 259–264.PubMedGoogle Scholar
  55. Kawashima, Y., Musoh, K. and Kozuka, H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver. Increased biosynthesis of omega 6 polyunsaturated fatty acids. J Biol Chem, 265 (1990) 9170–9175.PubMedGoogle Scholar
  56. Kim, H.I., Cha, J.Y., Kim, S.Y., Kim, J.W., Roh, K.J., Seong, J.K., Lee, N.T., Choi, K.Y., Kim, K.S. and Ahn, Y.H. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes, 51 (2002) 676–685.PubMedCrossRefGoogle Scholar
  57. Klein, W., Weber, M.H. and Marahiel, M.A. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol, 181 (1999) 5341–5349.PubMedGoogle Scholar
  58. Kwast, K.E., Burke, P.V. and Poyton, R.O. Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol, 201 (1998) 1177–1195.PubMedGoogle Scholar
  59. Lindqvist, Y., Huang, W., Schneider, G. and Shanklin, J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J, 15 (1996) 4081–4092.PubMedGoogle Scholar
  60. Lopez, C.S., Heras, H., Garda, H., Ruzal, S., Sanchez-Rivas, C. and Rivas, E. Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol, 55 (2000) 137–142.PubMedCrossRefGoogle Scholar
  61. Los, D.A. and Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta, 1666 (2004) 142–157.PubMedGoogle Scholar
  62. Los, D., Horvath, I., Vigh, L. and Murata, N. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett, 318 (1993) 57–60.PubMedCrossRefGoogle Scholar
  63. Los, D.A., Ray, M.K. and Murata, N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol, 25 (1997) 1167–1175.PubMedCrossRefGoogle Scholar
  64. Magana, M.M., Lin, S.S., Dooley, K.A. and Osborne, T.F. Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res, 38 (1997) 1630–1638.PubMedGoogle Scholar
  65. Man, W.C., Miyazaki, M., Chu, K. and Ntambi, J.M. Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem, 281 (2006) 1251–1260.PubMedCrossRefGoogle Scholar
  66. Mansilla, M.C. and de Mendoza, D. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol, 183 (2005) 229–235.PubMedCrossRefGoogle Scholar
  67. Mansilla, M.C., Cybulski, L.E., Albanesi, D. and de Mendoza, D. Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol, 186 (2004) 6681–6688.PubMedCrossRefGoogle Scholar
  68. Marrakchi, H., Choi, K.H. and Rock, C.O. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem, 277 (2002) 44809–44816.PubMedCrossRefGoogle Scholar
  69. Martin, C.E., Oh, C.S. and Jiang, Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta, 1771 (2007) 271–285.PubMedGoogle Scholar
  70. Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Yoshikawa, T., Hasty, A.H., Tamura, Y., Osuga, J., Okazaki, H., Iizuka, Y., Takahashi, A., Sone, H., Gotoda, T., Ishibashi, S. and Yamada, N. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res, 43 (2002) 107–114.PubMedGoogle Scholar
  71. McDonough, V.M., Stukey, J.E. and Martin, C.E. Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem, 267 (1992) 5931–5936.PubMedGoogle Scholar
  72. Mihara, K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem, 108 (1990) 1022–1029.PubMedGoogle Scholar
  73. Mikami, K., Kanesaki, Y., Suzuki, I. and Murata, N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol, 46 (2002) 905–915.PubMedCrossRefGoogle Scholar
  74. Miller, C.W. and Ntambi, J.M. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci U S A, 93 (1996) 9443–9448.PubMedCrossRefGoogle Scholar
  75. Miyazaki, M., Kim, Y.C., Gray-Keller, M.P., Attie, A.D. and Ntambi, J.M. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem, 275 (2000) 30132–30138.PubMedCrossRefGoogle Scholar
  76. Miyazaki, M., Man, W.C. and Ntambi, J.M. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr, 131 (2001) 2260–2268.PubMedGoogle Scholar
  77. Murata, N. and Wada, H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J, 308 ( Pt 1) (1995) 1–8.PubMedGoogle Scholar
  78. Murata, N. and Suzuki, I. Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot, 57, (2006) 235–247.PubMedCrossRefGoogle Scholar
  79. Mustardy, L., Los, D.A., Gombos, Z. and Murata, N. Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation. Proc Natl Acad Sci U S A, 93 (1996) 10524–10527.PubMedCrossRefGoogle Scholar
  80. Nakagawa, Y., Sugioka, S., Kaneko, Y. and Harashima, S. O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol, 183 (2001) 745–751.PubMedCrossRefGoogle Scholar
  81. Nakagawa, Y., Sakumoto, N., Kaneko, Y. and Harashima, S. Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 291 (2002) 707–713.PubMedCrossRefGoogle Scholar
  82. Nakamura, M.T. and Nara, T.Y. Gene regulation of mammalian desaturases. Biochem Soc Trans, 30 (2002) 1076–1079.PubMedCrossRefGoogle Scholar
  83. Nakamura, M.T. and Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr, 24 (2004) 345–376.PubMedCrossRefGoogle Scholar
  84. Napier, J.A., Hey, S.J., Lacey, D.J. and Shewry, P.R. Identification of a Caenorhabditis elegans delta6-fatty-acid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem J, 330 (Pt 2) (1998) 611–614.PubMedGoogle Scholar
  85. Nara, T.Y., He, W.S., Tang, C., Clarke, S.D. and Nakamura, M.T. The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun, 296 (2002) 111–117.PubMedCrossRefGoogle Scholar
  86. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S. and Espenshade, P.J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 102 (2000) 315–323.PubMedCrossRefGoogle Scholar
  87. Ntambi, J.M. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem, 267 (1992) 10925–10930.PubMedGoogle Scholar
  88. Ntambi, J.M. The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res, 34 (1995) 139–150.PubMedCrossRefGoogle Scholar
  89. Ntambi, J.M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res, 40 (1999) 1549–1558.PubMedGoogle Scholar
  90. Ntambi, J.M. and Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol, 14 (2003) 255–261.PubMedCrossRefGoogle Scholar
  91. Ntambi, J.M., Sessler, A.M. and Takova, T. A model cell line to study regulation of stearoyl-CoA desaturase gene 1 expression by insulin and polyunsaturated fatty acids. Biochem Biophys Res Commun, 220 (1996) 990–995.PubMedCrossRefGoogle Scholar
  92. Ntambi, J.M., Buhrow, S.A., Kaestner, K.H., Christy, R.J., Sibley, E., Kelly, T.J., Jr. and Lane, M.D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 263 (1988) 17291–17300.PubMedGoogle Scholar
  93. Ntambi, J.M., Choi, Y., Park, Y., Peters, J.M. and Pariza, M.W. Effects of conjugated linoleic acid (CLA) on immune responses, body composition and stearoyl-CoA desaturase. Can J Appl Physiol, 27 (2002a) 617–628.Google Scholar
  94. Ntambi, J.M., Miyazaki, M., Stoehr, J.P., Lan, H., Kendziorski, C.M., Yandell, B.S., Song, Y., Cohen, P., Friedman, J.M. and Attie, A.D. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A, 99 (2002b) 11482–11486.CrossRefGoogle Scholar
  95. Ohlrogge, J. and Browse, J. Lipid biosynthesis. Plant Cell, 7 (1995) 957–970.PubMedCrossRefGoogle Scholar
  96. Pereira, S.L., Leonard, A.E. and Mukerji, P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids, 68 (2003) 97–106.PubMedCrossRefGoogle Scholar
  97. Phadtare, S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol, 6 (2004) 125–136.PubMedGoogle Scholar
  98. Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G.S., Baulard, A.R., Slayden, R.A., DeBarber, A.E., Barry, C.E., 3rd, Baird, M.S., Crick, D.C. and Brennan, P.J. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J Biol Chem, 278 (2003) 53123–53130.PubMedCrossRefGoogle Scholar
  99. Phinney, S.D. British radiation study. Science, 248 (1990) 1595.PubMedCrossRefGoogle Scholar
  100. Reddy, A.S., Nuccio, M.L., Gross, L.M. and Thomas, T.L. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol Biol, 22 (1993) 293–300.PubMedCrossRefGoogle Scholar
  101. Rimoldi, O.J., Finarelli, G.S. and Brenner, R.R. Effects of diabetes and insulin on hepatic delta6 desaturase gene expression. Biochem Biophys Res Commun, 283 (2001) 323–326.PubMedCrossRefGoogle Scholar
  102. Sakamoto, T. and Bryant, D.A. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol Microbiol, 23 (1997)1281–1292.PubMedCrossRefGoogle Scholar
  103. Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M. and Murata, N. Cloning of omega 3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol, 26 (1994a) 249–263.CrossRefGoogle Scholar
  104. Sakamoto, T., Wada, H., Nishida, I., Ohmori, M. and Murata, N. delta 9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. J Biol Chem, 269 (1994b) 25576–25580.Google Scholar
  105. Sampath, H. and Ntambi, J.M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr, 25 (2005) 317–340.PubMedCrossRefGoogle Scholar
  106. Schoonjans, K., Staels, B. and Auwerx, J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res, 37 (1996) 907–925.PubMedGoogle Scholar
  107. Schwartz, J. Role of polyunsaturated fatty acids in lung disease. Am J Clin Nutr, 71 (2000) 393S–396S.PubMedGoogle Scholar
  108. Sessler, A.M. and Ntambi, J.M. Polyunsaturated fatty acid regulation of gene expression. J Nutr, 128 (1998) 923–926.PubMedGoogle Scholar
  109. Shanklin, J. and Cahoon, E.B. Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol, 49 (1998) 611–641.PubMedCrossRefGoogle Scholar
  110. Shanklin, J., Whittle, E. and Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 33 (1994) 12787–12794.PubMedCrossRefGoogle Scholar
  111. Shimomura, I., Bashmakov, Y., Shimano, H., Horton, J.D., Goldstein, J.L. and Brown, M.S. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc Natl Acad Sci U S A, 94 (1997) 12354–12359.PubMedCrossRefGoogle Scholar
  112. Shimomura, I., Bashmakov, Y. and Horton, J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem, 274 (1999) 30028–30032.PubMedCrossRefGoogle Scholar
  113. Shoumskaya, M.A., Paithoonrangsarid, K., Kanesaki, Y., Los, D.A., Zinchenko, V.V., Tanticharoen, M., Suzuki, I. and Murata, N. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in synechocystis. J Biol Chem, 280 (2005) 21531–21538.PubMedCrossRefGoogle Scholar
  114. Singh A., and Ward OP. Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbiol, 45 (1997) 271–312.PubMedCrossRefGoogle Scholar
  115. Skerrett, P.J. and Hennekens, C.H. Consumption of fish and fish oils and decreased risk of stroke. Prev Cardiol, 6 (2003) 38–41.PubMedCrossRefGoogle Scholar
  116. Sperling, P., Ternes, P., Zank, T.K. and Heinz, E. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids, 68 (2003) 73–95.PubMedCrossRefGoogle Scholar
  117. Stukey, J.E., McDonough, V.M. and Martin, C.E. The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem, 265 (1990)20144–20149.PubMedGoogle Scholar
  118. Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K. and Murata, N. The pathway for perception and transduction of low-temperature signals in Synechocystis. Embo J, 19 (2000) 1327–1334.PubMedCrossRefGoogle Scholar
  119. Tabor, D.E., Kim, J.B., Spiegelman, B.M. and Edwards, P.A. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J Biol Chem, 274 (1999) 20603–20610.PubMedCrossRefGoogle Scholar
  120. Thijssen, M.A. and Mensink, R.P. Fatty acids and atherosclerotic risk. Handb Exp Pharmacol. (2005)165–194.Google Scholar
  121. Tocher, D.R., Leaver, M.J. and Hodgson, P.A. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog Lipid Res, 37 (1998) 73–117.PubMedCrossRefGoogle Scholar
  122. Towle, H.C., Kaytor, E.N. and Shih, H.M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr, 17 (1997) 405–433.PubMedCrossRefGoogle Scholar
  123. Uttaro, A.D. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life, 58 (2006) 563–571.PubMedCrossRefGoogle Scholar
  124. van Beilen, J.B., Wubbolts, M.G. and Witholt, B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation, 5 (1994) 161–174.PubMedCrossRefGoogle Scholar
  125. Vasconcelles, M.J., Jiang, Y., McDaid, K., Gilooly, L., Wretzel, S., Porter, D.L., Martin, C.E. and Goldberg, M.A. Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem, 276 (2001) 14374–14384.PubMedGoogle Scholar
  126. Vemula, M., Kandasamy, P., Oh, C.S., Chellappa, R., Gonzalez, C.I. and Martin, C.E. Maintenance and regulation of mRNA stability of the Saccharomyces cerevisiae OLE1 gene requires multiple elements within the transcript that act through translation-independent mechanisms. J Biol Chem, 278 (2003) 45269–45279.PubMedCrossRefGoogle Scholar
  127. Wallis, J.G. and Browse, J. The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys, 365 (1999) 307–316.PubMedCrossRefGoogle Scholar
  128. Waters, K.M. and Ntambi, J.M. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J Biol Chem, 269 (1994) 27773–27777.PubMedGoogle Scholar
  129. Waters, K.M., Miller, C.W. and Ntambi, J.M. Localization of a polyunsaturated fatty acid response region in stearoyl-CoA desaturase gene 1. Biochim Biophys Acta, 1349 (1997) 33–42.PubMedGoogle Scholar
  130. Willson, T.M., Lambert, M.H. and Kliewer, S.A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem, 70 (2001) 341–367.PubMedCrossRefGoogle Scholar
  131. Xu, J., Nakamura, M.T., Cho, H.P. and Clarke, S.D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J Biol Chem, 274,(1999) 23577–23583.PubMedCrossRefGoogle Scholar
  132. Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T. and Clarke, S.D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem, 276 (2001) 9800–9807.PubMedCrossRefGoogle Scholar
  133. Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T., Amemiya-Kudo, M., Matsuzaka, T., Nakakuki, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Takahashi, A., Sone, H., Osuga Ji, J., Gotoda, T., Ishibashi, S. and Yamada, N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem, 277 (2002) 1705–1711.PubMedCrossRefGoogle Scholar
  134. Yoshikawa, T., Ide, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Matsuzaka, T., Yatoh, S., Kitamine, T., Okazaki, H., Tamura, Y., Sekiya, M., Takahashi, A., Hasty, A.H., Sato, R., Sone, H., Osuga, J., Ishibashi, S. and Yamada, N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol, 17 (2003) 1240–1254.PubMedCrossRefGoogle Scholar
  135. Zhang, L., Ge, L., Parimoo, S., Stenn, K. and Prouty, S.M. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J, 340 (Pt 1) (1999a) 255–264.CrossRefGoogle Scholar
  136. Zhang, L., Ge, L., Tran, T., Stenn, K. and Prouty, S.M. Isolation and characterization of the human stearoyl-CoA desaturase gene promoter: requirement of a conserved CCAAT cis-element. Biochem J, 357 (2001) 183–193.PubMedCrossRefGoogle Scholar
  137. Zhang, S., Skalsky, Y. and Garfinkel, D.J. MGA2 or SPT23 is required for transcription of the delta9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics, 151 (1999b) 473–483.Google Scholar
  138. Zhang, Y.M., Zhu, K., Frank, M.W. and Rock, C.O. A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol Microbiol, 66 (2007) 622–632.PubMedCrossRefGoogle Scholar
  139. Zhu, K., Choi, K.H., Schweizer, H.P., Rock, C.O. and Zhang, Y.M. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol, 60 (2006) 260–273.PubMedCrossRefGoogle Scholar
  140. Zolfaghari, R., Cifelli, C.J., Banta, M.D. and Ross, A.C. Fatty acid delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. Arch Biochem Biophys, 391 (2001) 8–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • María Cecilia Mansilla
  • Claudia E. Banchio
  • Diego de Mendoza
    • 1
  1. 1.Departamento de Microbiologia ySuipacha 531, (S2002LRK)Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y TécnicasArgentina

Personalised recommendations