Lipidomics in diagnosis of lipidoses

  • C. Wolf
  • P.J. Quinn
Part of the Subcellular Biochemistry book series (SCBI, volume 49)

Abstract

A review is presented of the major clinical features of a number of glycolipidoses including Fabry, Gaucher, Tay-Sachs, metachromatic leukodystrophy as well as CeroidLipofucinosis and Sjogren-Larsson syndrome. The possibilities offered by lipidomics for diagnosis and follow-up after enzyme replacement therapy are presented from a practical perspective. The contribution of HPLC coupled with tandem mass spectrometry has considerably simplified the detection and assay of abnormal metabolites. Corresponding internal standards consisting of weighed mixtures of the stable-isotope labeled metabolites required to calibrate and quantitate lipid components of these orphan diseases standards have yet to become commercially available. A lipidomics approach has been found to compare favorably with DNA-sequence analysis for the rapid diagnosis of pre-birth syndromes resulting from these multiple gene defects. The method also seems to be suitable for screening applications in terms of a high throughput combined with a low rate of false diagnoses based on the wide differences in metabolite concentrations found in affected patients as compared with normal subjects. The practical advantages of handling samples for lipidomic diagnoses as compared to enzyme assay are presented for application to diagnosis during pregnancy.

Keywords

Lipidomics Fabry Gaucher Tay-Sachs Lipofucinosis Sjogren-Larsson syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The review was supported by a grant from the Human Frontier Science Programme (RGP16/2005).

References

  1. Akerman B.R., Natowicz M.R., Kaback M.M., Loyer M., Campeau E., Gravel R.A., Novel mutations and DNA-based screening in non-Jewish carriers of Tay-Sachs disease, American journal of human genetics 60 (1997) 1099–1106.PubMedGoogle Scholar
  2. Aslam S.A., Sheth H.G., Ocular features of Sjogren-Larsson syndrome, Clinical & experimental ophthalmology 35 (2007) 98–99.CrossRefGoogle Scholar
  3. Bach G., Tomczak J., Risch N., Ekstein J., Tay-Sachs screening in the Jewish Ashkenazi population: DNA testing is the preferred procedure, American journal of medical genetics 99 (2001) 70–75.PubMedCrossRefGoogle Scholar
  4. Banikazemi M., Bultas J., Waldek S., Wilcox W.R., Whitley C.B., McDonald M., Finkel R., Packman S., Bichet D.G., Warnock D.G., Desnick R.J., Agalsidase-beta therapy for advanced Fabry disease: a randomized trial, Annals of internal medicine 146 (2007) 77–86.PubMedGoogle Scholar
  5. Beutler E., Lysosomal storage diseases: natural history and ethical and economic aspects, Molecular genetics and metabolism 88 (2006) 208–215.PubMedCrossRefGoogle Scholar
  6. Beutler E., Kuhl W., Subunit structure of human hexosaminidase verified: interconvertibility of hexosaminidase isozymes, Nature 258 (1975) 262–264.PubMedCrossRefGoogle Scholar
  7. Beutler E., Kuhl W., Comings D., Hexosaminidase isozyme in type O Gm2 gangliosidosis (Sandhoff-Jatzkewitz disease), American journal of human genetics 27 (1975) 628–638.PubMedGoogle Scholar
  8. Bligh E.G., Dyer W.J., A Rapid Method of Total Lipid Extraction and Purification, Canadian Journal of Biochemistry and Physiology 37 (1959) 911–917.PubMedGoogle Scholar
  9. Bodennec J., Pelled D., Riebeling C., Trajkovic S., Futerman A.H., Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide, Faseb J 16 (2002) 1814–1816.PubMedGoogle Scholar
  10. Brady R.O., Kanfer J., Shapiro D., The Metabolism of Glucocerebrosides. I. Purification and Properties of a Glucocerebroside-Cleaving Enzyme from Spleen Tissue, The Journal of biological chemistry 240 (1965) 39–43.PubMedGoogle Scholar
  11. Brady R.O., Kanfer J.N., Shapiro D., Metabolism of Glucocerebrosides. Ii. Evidence of an Enzymatic Deficiency in Gaucher's Disease, Biochem Biophys Res Commun 18 (1965) 221–225.PubMedCrossRefGoogle Scholar
  12. Chamoles N.A., Blanco M., Gaggioli D., Casentini C., Tay-Sachs and Sandhoff diseases: enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards, Clinica chimica acta; international journal of clinical chemistry 318 (2002) 133–137.PubMedCrossRefGoogle Scholar
  13. Colsch B., Afonso C., Turpin J.C., Portoukalian J., Tabet J.C., Baumann N., Sulfogalactosylceramides in motor and psycho-cognitive adult metachromatic leukodystrophy: relations between clinical, biochemical analysis and molecular aspects, Biochim Biophys Acta (2007) in press.Google Scholar
  14. Conzelmann E., Kytzia H.J., Navon R., Sandhoff K., Ganglioside GM2 N-acetyl-beta-D-galactosaminidase activity in cultured fibroblasts of late-infantile and adult GM2 gangliosidosis patients and of healthy probands with low hexosaminidase level, American journal of human genetics 35 (1983) 900–913.PubMedGoogle Scholar
  15. Cybulla M., Neumann H.P., [Fabry disease. An interdisciplinary challenge], Deutsche medizinische Wochenschrift (1946) 132 (2007) 2271–2277.PubMedCrossRefGoogle Scholar
  16. DeGraba T., Azhar S., Dignat-George F., Brown E., Boutiere B., Altarescu G., McCarron R., Schiffmann R., Profile of endothelial and leukocyte activation in Fabry patients, Annals of neurology 47 (2000) 229–233.PubMedCrossRefGoogle Scholar
  17. Eckhardt M., Hedayati K.K., Pitsch J., Lullmann-Rauch R., Beck H., Fewou S.N., Gieselmann V., Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy, Journal of Neuroscience 27 (2007) 9009–9021.PubMedCrossRefGoogle Scholar
  18. Eitzman D.T., Bodary P.F., Shen Y., Khairallah C.G., Wild S.R., Abe A., Shaffer-Hartman J., Shayman J.A., Fabry disease in mice is associated with age-dependent susceptibility to vascular thrombosis, Journal of the American Society of Nephrology 14 (2003) 298–302.PubMedCrossRefGoogle Scholar
  19. Falguieres T., Mallard F., Baron C., Hanau D., Lingwood C., Goud B., Salamero J., Johannes L., Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes, Molecular Biology of the Cell 12 (2001) 2453–2468.PubMedGoogle Scholar
  20. Falguieres T., Romer W., Amessou M., Afonso C., Wolf C., Tabet J.C., Lamaze C., Johannes L., Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells, FEBS Journal 273 (2006) 5205–5218.PubMedCrossRefGoogle Scholar
  21. Fellgiebel A., Muller M.J., Mazanek M., Baron K., Beck M., Stoeter P., White matter lesion severity in male and female patients with Fabry disease, Neurology 65 (2005) 600–602.PubMedCrossRefGoogle Scholar
  22. Folch J., Lees M., Stanley G.H.S., A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, Journal of Biological Chemistry 226 (1957) 497–509.PubMedGoogle Scholar
  23. George T., Boyd B., Price M., Lingwood C., Maloney M., MHC class II proteins contain a potential binding site for the verotoxin receptor glycolipid CD77, Cell Mol Biol (Noisy-le-grand) 47 (2001) 1179–1185.Google Scholar
  24. Hein L.K., Meikle P.J., Hopwood J.J., Fuller M., Secondary sphingolipid accumulation in a macrophage model of Gaucher disease, Molecular genetics and metabolism 92 (2007) 336–345.PubMedCrossRefGoogle Scholar
  25. Honda S., Akao E., Suzuki S., Okuda M., Kakehi K., Nakamura J., High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives, Analytical biochemistry 180 (1989) 351–357.PubMedCrossRefGoogle Scholar
  26. Hsu F.F., Turk J., Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation, Journal of the American Society for Mass Spectrometry 15 (2004) 536–546.PubMedCrossRefGoogle Scholar
  27. Kacher Y., Golan A., Pewzner-Jung Y., Futerman A.H., Changes in macrophage morphology in a Gaucher disease model are dependent on CTP:phosphocholine cytidylyltransferase alpha, Blood cells, molecules & diseases 39 (2007) 124–129.CrossRefGoogle Scholar
  28. Kaneski C.R., Moore D.F., Ries M., Zirzow G.C., Schiffmann R., Myeloperoxidase predicts risk of vasculopathic events in hemizgygous males with Fabry disease, Neurology 67 (2006) 2045–2047.PubMedCrossRefGoogle Scholar
  29. Khine A.A., Lingwood C.A., Functional significance of globotriaosyl ceramide in interferon-alpha(2)/type 1 interferon receptor-mediated antiviral activity, Journal of Cellular Physiology 182 (2000) 97–108.PubMedCrossRefGoogle Scholar
  30. Kitagawa T., Ishige N., Suzuki K., Owada M., Ohashi T., Kobayashi M., Eto Y., Tanaka A., Mills K., Winchester B., Keutzer J., Non-invasive screening method for Fabry disease by measuring globotriaosylceramide in whole urine samples using tandem mass spectrometry, Molecular genetics and metabolism 85 (2005) 196–202.PubMedCrossRefGoogle Scholar
  31. Koprivica V., Stone D.L., Park J.K., Callahan M., Frisch A., Cohen I.J., Tayebi N., Sidransky E., Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease, American journal of human genetics 66 (2000) 1777–1786.PubMedCrossRefGoogle Scholar
  32. Lin L., Sohar I., Lackland H., Lobel P., The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH, The Journal of biological chemistry 276 (2001) 2249–2255.PubMedGoogle Scholar
  33. Lingwood C.A., Role of verotoxin receptors in pathogenesis, Trends Microbiol 4 (1996) 147–153.PubMedCrossRefGoogle Scholar
  34. Lu J.Y., Verkruyse L.A., Hofmann S.L., Lipid thioesters derived from acylated proteins accumulate in infantile neuronal ceroid lipofuscinosis: correction of the defect in lymphoblasts by recombinant palmitoyl-protein thioesterase, Proceedings of the National Academy of Sciences of the United States of America 93 (1996) 10046–10050.PubMedCrossRefGoogle Scholar
  35. Lugowska A., Amaral O., Berger J., Berna L., Bosshard N.U., Chabas A., Fensom A., Gieselmann V., Gorovenko N.G., Lissens W., Mansson J.E., Marcao A., Michelakakis H., Bernheimer H., Ol'khovych N.V., Regis S., Sinke R., Tylki-Szymanska A., Czartoryska B., Mutations c.459+1G>A and p.P426L in the ARSA gene: prevalence in metachromatic leukodystrophy patients from European countries, Molecular genetics and metabolism 86 (2005) 353–359.PubMedCrossRefGoogle Scholar
  36. Lukacs Z., Santavuori P., Keil A., Steinfeld R., Kohlschutter A., Rapid and simple assay for the determination of tripeptidyl peptidase and palmitoyl protein thioesterase activities in dried blood spots, Clinical chemistry 49 (2003) 509–511.PubMedCrossRefGoogle Scholar
  37. Maloney M.D., Lingwood C.A., CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis, Journal of Experimental Medicine 180 (1994) 191–201.PubMedCrossRefGoogle Scholar
  38. Mangeney M., Lingwood C.A., Taga S., Caillou B., Tursz T., Wiels J., Apoptosis induced in Burkitt's lymphoma cells via Gb3/CD77, a glycolipid antigen, Cancer Research 53 (1993) 5314–5319.PubMedGoogle Scholar
  39. Mills K., Johnson A., Winchester B., Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry, FEBS letters 515 (2002) 171–176.PubMedCrossRefGoogle Scholar
  40. Moore D.F., Herscovitch P., Schiffmann R., Selective arterial distribution of cerebral hyperperfusion in Fabry disease, Journal of Neuroimaging 11 (2001) 303–307.PubMedCrossRefGoogle Scholar
  41. Moore D.F., Scott L.T., Gladwin M.T., Altarescu G., Kaneski C., Suzuki K., Pease-Fye M., Ferri R., Brady R.O., Herscovitch P., Schiffmann R., Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy, Circulation 104 (2001) 1506–1512.PubMedCrossRefGoogle Scholar
  42. Myerowitz R., Costigan F.C., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase, The Journal of biological chemistry 263 (1988) 18587–18589.PubMedGoogle Scholar
  43. Myerowitz R., Lawson D., Mizukami H., Mi Y., Tifft C.J., Proia R.L., Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling, Human molecular genetics 11 (2002) 1343–1350.PubMedCrossRefGoogle Scholar
  44. Naiki M., Marcus D.M., Human erythrocyte P and Pk blood group antigens: identification as glycosphingolipids, Biochemical and Biophysical Research Communications 60 (1974) 1105–1111.PubMedCrossRefGoogle Scholar
  45. Nelson B.C., Roddy T., Araghi S., Wilkens D., Thomas J.J., Zhang K., Sung C.C., Richards S.M., Globotriaosylceramide isoform profiles in human plasma by liquid chromatography-tandem mass spectrometry, Journal of chromatography 805 (2004) 127–134.PubMedCrossRefGoogle Scholar
  46. Ohashi Y., Nagai Y., Fast-atom-bombardment chemistry of sulfatide (3-sulfogalactosylceramide), Carbohydrate research 221 (1991) 235–243.PubMedCrossRefGoogle Scholar
  47. Pigg M., Annton-Lamprecht I., Braun-Quentin C., Gustavson K.H., Wadelius C., Further evidence of genetic homogeneity in Sjogren-Larsson syndrome, Acta dermato-venereologica 79 (1999) 41–43.PubMedCrossRefGoogle Scholar
  48. Puri A., Hug P., Jernigan K., Rose P., Blumenthal R., Role of glycosphingolipids in HIV-1 entry: requirement of globotriosylceramide (Gb3) in CD4/CXCR4-dependent fusion, Bioscience reports 19 (1999) 317–325.PubMedCrossRefGoogle Scholar
  49. Ramakrishnan H., Hedayati K.K., Lullmann-Rauch R., Wessig C., Fewou S.N., Maier H., Goebel H.H., Gieselmann V., Eckhardt M., Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy, Journal of Neuroscience 27 (2007) 9482–9490.PubMedCrossRefGoogle Scholar
  50. Ramsay S.L., Meikle P.J., Hopwood J.J., Clements P.R., Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides, Analytical biochemistry 345 (2005) 30–46.PubMedCrossRefGoogle Scholar
  51. Rauschka H., Colsch B., Baumann N., Wevers R., Schmidbauer M., Krammer M., Turpin J.C., Lefevre M., Olivier C., Tardieu S., Krivit W., Moser H., Moser A., Gieselmann V., Zalc B., Cox T., Reuner U., Tylki-Szymanska A., Aboul-Enein F., LeGuern E., Bernheimer H., Berger J., Late-onset metachromatic leukodystrophy: genotype strongly influences phenotype, Neurology 67 (2006) 859–863.PubMedCrossRefGoogle Scholar
  52. Ries M., Clarke J.T., Whybra C., Timmons M., Robinson C., Schlaggar B.L., Pastores G., Lien Y.H., Kampmann C., Brady R.O., Beck M., Schiffmann R., Enzyme-replacement therapy with agalsidase alfa in children with Fabry disease, Pediatrics 118 (2006) 924–932.PubMedCrossRefGoogle Scholar
  53. Rimoin D.L., Greenwald S., Nathan T.J., Kaback M.M., Unique considerations for genetic counseling in community-based carrier screening programs, Progress in clinical and biological research 18 (1977) 297–304.PubMedGoogle Scholar
  54. Rizzo W.B., Craft D.A., Sjogren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts, The Journal of clinical investigation 88 (1991) 1643–1648.PubMedCrossRefGoogle Scholar
  55. Rizzo W.B., Craft D.A., Dammann A.L., Phillips M.W., Fatty alcohol metabolism in cultured human fibroblasts. Evidence for a fatty alcohol cycle, The Journal of biological chemistry 262 (1987) 17412–17419.PubMedGoogle Scholar
  56. Rizzo W.B., Craft D.A., Kelson T.L., Bonnefont J.P., Saudubray J.M., Schulman J.D., Black S.H., Tabsh K., Dirocco M., Gardner R.J., Prenatal diagnosis of Sjogren-Larsson syndrome using enzymatic methods, Prenatal diagnosis 14 (1994) 577–581.PubMedCrossRefGoogle Scholar
  57. Rizzo W.B., Dammann A.L., Craft D.A., Black S.H., Tilton A.H., Africk D., Chaves-Carballo E., Holmgren G., Jagell S., Sjogren-Larsson syndrome: inherited defect in the fatty alcohol cycle, The Journal of pediatrics 115 (1989) 228–234.PubMedCrossRefGoogle Scholar
  58. Roddy T.P., Nelson B.C., Sung C.C., Araghi S., Wilkens D., Zhang X.K., Thomas J.J., Richards S.M., Liquid chromatography-tandem mass spectrometry quantification of globotriaosylceramide in plasma for long-term monitoring of Fabry patients treated with enzyme replacement therapy, Clinical chemistry 51 (2005) 237–240.PubMedCrossRefGoogle Scholar
  59. Rogers G.R., Rizzo W.B., Zlotogorski A., Hashem N., Lee M., Compton J.G., Bale S.J., Genetic homogeneity in Sjogren-Larsson syndrome: linkage to chromosome 17p in families of different non-Swedish ethnic origins, American journal of human genetics 57 (1995) 1123–1129.PubMedGoogle Scholar
  60. Romanes G.J., Sjogren-Larson syndrome, The British journal of ophthalmology 52 (1968) 174–177.PubMedCrossRefGoogle Scholar
  61. Roux C., Action teratogène du triparanol chez l'animal, Archives françaises de pédiatrie 21 (1964) 451–464.PubMedGoogle Scholar
  62. Schiffmann R., Murray G.J., Treco D., Daniel P., Sellos-Moura M., Myers M., Quirk J.M., Zirzow G.C., Borowski M., Loveday K., Anderson T., Gillespie F., Oliver K.L., Jeffries N.O., Doo E., Liang T.J., Kreps C., Gunter K., Frei K., Crutchfield K., Selden R.F., Brady R.O., Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease, Proceedings of the National Academy of Sciences of the United States of America 97 (2000) 365–370.PubMedCrossRefGoogle Scholar
  63. Sevin C., Verot L., Benraiss A., Van Dam D., Bonnin D., Nagels G., Fouquet F., Gieselmann V., Vanier M.T., De Deyn P.P., Aubourg P., Cartier N., Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer, Gene therapy 14 (2007) 405–414.PubMedCrossRefGoogle Scholar
  64. Shen Y., Bodary P.F., Vargas F.B., Homeister J.W., Gordon D., Ostenso K.A., Shayman J.A., Eitzman D.T., Alpha-galactosidase A deficiency leads to increased tissue fibrin deposition and thrombosis in mice homozygous for the factor V Leiden mutation, Stroke 37 (2006) 1106–1108.PubMedCrossRefGoogle Scholar
  65. Sillence D.J., Puri V., Marks D.L., Butters T.D., Dwek R.A., Pagano R.E., Platt F.M., Glucosylceramide modulates membrane traffic along the endocytic pathway, Journal of lipid research 43 (2002) 1837–1845.PubMedCrossRefGoogle Scholar
  66. Smith D.C., Sillence D.J., Falguieres T., Jarvis R.M., Johannes L., Lord J.M., Platt F.M., Roberts L.M., The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect, Molecular Biology of the Cell 17 (2006) 1375–1387.PubMedCrossRefGoogle Scholar
  67. Smith D.W., Lemli L., Opitz J.M., A Newly Recognized Syndrome of Multiple Congenital Anomalies, The Journal of pediatrics 64 (1964) 210–217.PubMedCrossRefGoogle Scholar
  68. Steiner R., Koch T., Al-Uzri A., Uchida N., Tamaki S., Tsukamoto A., Guillaume D., Selden N., Molecular Genetics and Metabolism A phase I clinical study of human CNS stem cells (HUCNS-SC) in patients with neuronal ceroid lipofuscinosis, in: Elsevier (Ed.), Molecular genetics and metabolism, Elsevier, 2007, p. 17.Google Scholar
  69. Taga S., Carlier K., Mishal Z., Capoulade C., Mangeney M., Lecluse Y., Coulaud D., Tetaud C., Pritchard L.L., Tursz T., Wiels J., Intracellular signaling events in CD77-mediated apoptosis of Burkitt's lymphoma cells, Blood 90 (1997) 2757–2767.PubMedGoogle Scholar
  70. Tint G.S., Cholesterol defect in Smith-Lemli-Opitz syndrome, American Journal of Medical Genetics 47 (1993) 573–574.PubMedCrossRefGoogle Scholar
  71. Trajkovic-Bodennec S., Bodennec J., Futerman A.H., Phosphatidylcholine metabolism is altered in a monocyte-derived macrophage model of Gaucher disease but not in lymphocytes, Blood cells, molecules & diseases 33 (2004) 77–82.CrossRefGoogle Scholar
  72. Tsui Z.C., Chen Q.R., Thomas M.J., Samuel M., Cui Z., A method for profiling gangliosides in animal tissues using electrospray ionization-tandem mass spectrometry, Analytical biochemistry 341 (2005) 251–258.PubMedCrossRefGoogle Scholar
  73. Tsuji D., Higashine Y., Matsuoka K., Sakuraba H., Itoh K., Therapeutic evaluation of GM2 gangliosidoses by ELISA using anti-GM2 ganglioside antibodies, Clinica chimica acta; international journal of clinical chemistry 378 (2007) 38–41.PubMedCrossRefGoogle Scholar
  74. Ullman M.D., McCluer R.H., Quantitative analysis of brain gangliosides by high performance liquid chromatography of their perbenzoyl derivatives, Journal of lipid research 26 (1985) 501–506.PubMedGoogle Scholar
  75. Ullman S., Nelson L.B., Jackson L.G., Prenatal diagnostic techniques. Chorionic villus sampling, Survey of ophthalmology 30 (1985) 33–40.PubMedCrossRefGoogle Scholar
  76. Utsumi K., Yamamoto N., Kase R., Takata T., Okumiya T., Saito H., Suzuki T., Uyama E., Sakuraba H., High incidence of thrombosis in Fabry's disease, Internal Medicine 36 (1997) 327–329.PubMedCrossRefGoogle Scholar
  77. Wang W.Q., Gustafson A., Ganglioside extraction from erythrocytes: a comparison study, Acta Chemica Scandinavica 49 (1995) 929–936.PubMedCrossRefGoogle Scholar
  78. Whitfield P.D., Nelson P., Sharp P.C., Bindloss C.A., Dean C., Ravenscroft E.M., Fong B.A., Fietz M.J., Hopwood J.J., Meikle P.J., Correlation among genotype, phenotype, and biochemical markers in Gaucher disease: implications for the prediction of disease severity, Molecular genetics and metabolism 75 (2002) 46–55.PubMedCrossRefGoogle Scholar
  79. Whitfield P.D., Sharp P.C., Johnson D.W., Nelson P., Meikle P.J., Characterization of urinary sulfatides in metachromatic leukodystrophy using electrospray ionization-tandem mass spectrometry, Molecular genetics and metabolism 73 (2001) 30–37.PubMedCrossRefGoogle Scholar
  80. Willemsen M.A., Cruysberg J.R., Rotteveel J.J., Aandekerk A.L., Van Domburg P.H., Deutman A.F., Juvenile macular dystrophy associated with deficient activity of fatty aldehyde dehydrogenase in Sjogren-Larsson syndrome, American journal of ophthalmology 130 (2000) 782–789.PubMedCrossRefGoogle Scholar
  81. Wisniewski K.E., Zhong N., Philippart M., Pheno/genotypic correlations of neuronal ceroid lipofuscinoses, Neurology 57 (2001) 576–581.PubMedGoogle Scholar
  82. Young E.P., Worthington V.C., Jackson M., Winchester B.G., Pre- and postnatal diagnosis of patients with CLN1 and CLN2 by assay of palmitoyl-protein thioesterase and tripeptidyl-peptidase I activities, European Journal of Paediatric Neurology 5 Suppl A (2001) 193–196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Wolf
    • 1
  • P.J. Quinn
  1. 1.Mass Spectrometry Unit, INSERM U538, Faculte de Medecine P. et M. Curie, University Paris-6France

Personalised recommendations