Skip to main content

Ceramide-Enriched Membrane Domains in Infectious Biology and Development

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Ceramide has been shown to be critically involved in multiple biological processes, for instance induction of apoptosis after ligation of death receptors or application of gamma-irradiation or UV-A light, respectively, regulation of cell differentiation, control of tumor cell growth, infection of mammalian cells with pathogenic bacteria and viruses or the control of embryo and organ development to name a few examples. Ceramide molecules form distinct large domains in the cell membrane, which may serve to re-organize cellular receptors and signalling molecules. Thus, in many conditions, ceramide may be involved in the spatial and temporal organisation of specific signalling pathways explaining the pleiotrophic effects of this lipid. Here, we focus on the role of ceramide and ceramide-enriched membrane domains, respectively, in bacterial infections, in particular of the lung, and sepsis. We describe the role of ceramide for infections with Neisseriae gonorhoeae, Staphylococcus aureus and Pseudomonas aeruginosa. Finally, we discuss newly emerging aspects of the cellular function of ceramide, i.e. its role in germ line and embryo development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barasch, J., Kiss, B., Prince, A., Saiman, L., Gruenert, D. and al-Awqati, Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature 352 (1991) 70–3.

    Article  PubMed  CAS  Google Scholar 

  • Bock, J., Szabo, I., Gamper, N., Adams, C. Gulbins, E. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305 (2003) 890–7.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A. London, E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14 (1998) 111–36.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A., He, X., Gordon, R. E., Wu, H. S., Gatt, S. Schuchman, E. H. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am J Pathol 161 (2002) 1061–75.

    PubMed  CAS  Google Scholar 

  • Butler, A., Gordon, R. E., Gatt, S. Schuchman, E. H. Sperm abnormalities in heterozygous acid sphingomyelinase knockout mice reveal a novel approach for the prevention of genetic diseases. Am J Pathol 170 (2007) 2077–88.

    Article  PubMed  CAS  Google Scholar 

  • Claus, R. A., Bunck, A. C., Bockmeyer, C. L., Brunkhorst, F. M., Losche, W., Kinscherf, R. Deigner, H. P. Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. Faseb J 19 (2005) 1719–21.

    PubMed  CAS  Google Scholar 

  • Comiskey, M. Warner, C. M. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol 303 (2007) 727–39.

    Article  PubMed  CAS  Google Scholar 

  • Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E. Kolesnick, R. Ceramide enables fas to cap and kill. J Biol Chem 276 (2001) 23954–61.

    Article  PubMed  CAS  Google Scholar 

  • Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C. Nelson, D. J. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8 (2006) 933–44.

    Article  PubMed  CAS  Google Scholar 

  • Dumitru, C. A. Gulbins, E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25 (2006) 5612–25.

    Article  PubMed  CAS  Google Scholar 

  • Dunkel, L., Hirvonen, V. Erkkila, K. Clinical aspects of male germ cell apoptosis during testis development and spermatogenesis. Cell Death Differ 4 (1997) 171–9.

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu, E., Park, J. H., Shtraizent, N., He, X. Schuchman, E. H. Acid ceramidase is a novel factor required for early embryo survival. Faseb J 21 (2007) 1403–9.

    Article  PubMed  CAS  Google Scholar 

  • Emoto, K. Umeda, M. An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J Cell Biol 149 (2000) 1215–24.

    Article  PubMed  CAS  Google Scholar 

  • Emoto, K., Inadome, H., Kanaho, Y., Narumiya, S. Umeda, M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J Biol Chem 280 (2005) 37901–7.

    Article  PubMed  CAS  Google Scholar 

  • Eramo, A., Sargiacomo, M., Ricci-Vitiani, L., Todaro, M., Stassi, G., Messina, C. G., Parolini, I., Lotti, F., Sette, G., Peschle, C. De Maria, R. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur J Immunol 34 (2004) 1930–40.

    Article  PubMed  CAS  Google Scholar 

  • Esen, M., Schreiner, B., Jendrossek, V., Lang, F., Fassbender, K., Grassme, H. Gulbins, E. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6 (2001) 431–9.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, C. M., Rawat, S. S., Puri, A., Wang, J. M., Ruscetti, F. W. Blumenthal, R. Ceramide, a target for antiretroviral therapy. Proc Natl Acad Sci USA 101 (2004) 15452–7.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, C. M. Blumenthal, R. Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res 69 (2006) 116–23.

    Article  PubMed  CAS  Google Scholar 

  • Göggel, R., Winoto-Morbach, S., Vielhaber, G., Imai, Y., Lindner, K., Brade, L., Brade, H., Ehlers, S., Slutsky, A. S., Schutze, S., Gulbins, E. Uhlig, S. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10 (2004) 155–60.

    Article  PubMed  CAS  Google Scholar 

  • Grassme, H., Gulbins, E., Brenner, B., Ferlinz, K., Sandhoff, K., Harzer, K., Lang, F. Meyer, T. F. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91 (1997) 605–15.

    Article  PubMed  CAS  Google Scholar 

  • Grassme, H., Kirschnek, S., Riethmueller, J., Riehle, A., von Kürthy, G., Lang, F., Weller, M. Gulbins, E. Host defense to Pseudomonas aeruginosa requires CD95/CD95 ligand interaction on epithelial cells. Science 290 (2000) 527–30.

    Article  PubMed  CAS  Google Scholar 

  • Grassme, H., Schwarz, H. Gulbins, E. Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284 (2001a) 1016–30.

    Article  CAS  Google Scholar 

  • Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R. Gulbins, E. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276 (2001b) 20589–96.

    Article  CAS  Google Scholar 

  • Grassme, H., Jendrossek, V., Bock, J., Riehle, A. Gulbins, E. Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168 (2002) 298–307.

    PubMed  CAS  Google Scholar 

  • Grassme, H., Cremesti, A., Kolesnick, R. Gulbins, E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22 (2003a) 5457–70.

    Article  CAS  Google Scholar 

  • Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R. Gulbins, E. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9 (2003b) 322–30.

    Article  CAS  Google Scholar 

  • Grassme, H., Riehle, A., Wilker, B. Gulbins, E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280 (2005) 26256–62.

    Article  PubMed  CAS  Google Scholar 

  • Gulbins, E. Kolesnick, R. Measurement of sphingomyelinase activity. Methods Enzymol 322 (2000) 382–8.

    Article  PubMed  CAS  Google Scholar 

  • Gulbins, E. Kolesnick, R. Raft ceramide in molecular medicine. Oncogene 22 (2003) 7070–7.

    Article  PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., Edwards, C. K., 3rd, Schuchman, E. H., Fuks, Z. Kolesnick, R. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186 (1997) 1831–41.

    Article  PubMed  CAS  Google Scholar 

  • Hakomori, S. Chemistry of Glycosphingolipids. In: Kanfer JN, Hakomori S, editors. Sphingolipid Biochemistry. New York and London: Plenum Press (1983) 1–165.

    Google Scholar 

  • Hanada, K., Palacpac, N. M., Magistrado, P. A., Kurokawa, K., Rai, G., Sakata, D., Hara, T., Horii, T., Nishijima, M. Mitamura, T. Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J Exp Med 195 (2002) 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Hauck, C. R., Grassme, H., Bock, J., Jendrossek, V., Ferlinz, K., Meyer, T. F. Gulbins, E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478 (2000) 260–6.

    Article  PubMed  CAS  Google Scholar 

  • Hinkovska, V. T., Petkova, D. H. Koumanov, K. S. A neutral sphingomyelinase in spermatozoal plasma membranes. Biochem Cell Biol 65 (1987) 525–8.

    Article  PubMed  CAS  Google Scholar 

  • Holopainen, J. M., Subramanian, M. Kinnunen, P. K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37 (1998) 17562–70.

    Article  PubMed  CAS  Google Scholar 

  • Jan, J. T., Chatterjee, S. Griffin, D. E. Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74 (2000) 6425–32.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, T., Look, D. Ferkol, T. NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 288 (2005) L471–9.

    Article  PubMed  CAS  Google Scholar 

  • Kidder, G. M. Mhawi, A. A. Gap junctions and ovarian folliculogenesis. Reproduction 123 (2002) 613–20.

    Article  PubMed  CAS  Google Scholar 

  • Kitatani, K., Idkowiak-Baldys, J. Hannun, Y. A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal (2007) PMID 18191382

    Google Scholar 

  • Kolesnick, R. N., Goni, F. M. Alonso, A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184 (2000) 285–300.

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Mi, Y., Liu, Y., Sasaki, T., Allende, M. L., Wu, Y. P., Yamashita, T. Proia, R. L. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279 (2004) 29367–73.

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy, K., Wang, G., Silva, J., Condie, B. G. Bieberich, E. Ceramide regulates atypical PKCzeta/lambda-mediated cell polarity in primitive ectoderm cells. A novel function of sphingolipids in morphogenesis. J Biol Chem 282 (2007) 3379–90.

    Article  PubMed  CAS  Google Scholar 

  • Lang, P. A., Schenck, M., Nicolay, J. P., Becker, J. U., Kempe, D. S., Lupescu, A., Koka, S., Eisele, K., Klarl, B. A., Rubben, H., Schmid, K. W., Mann, K., Hildenbrand, S., Hefter, H., Huber, S. M., Wieder, T., Erhardt, A., Häussinger, D., Gulbins, E. Lang, F. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13 (2007) 164–70.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Richburg, J. H., Younkin, S. C. Boekelheide, K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138 (1997) 2081–8.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. M., Park, J. H., Simonaro, C. M., He, X., Gordon, R. E., Friedman, A. H., Ehleiter, D., Paris, F., Manova, K., Hepbildikler, S., Fuks, Z., Sandhoff, K., Kolesnick, R. Schuchman, E. H. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79 (2002) 218–24.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, K., Uhlig, U. Uhlig, S. Ceramide alters endothelial cell permeability by a nonapoptotic mechanism. Br J Pharmacol 145 (2005) 132–40.

    Article  PubMed  CAS  Google Scholar 

  • London, M. London, E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279 (2004) 9997–10004.

    Article  PubMed  CAS  Google Scholar 

  • London, M., Bakht, O. London, E. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders. J Biol Chem 281 (2006) 21903–13.

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S. Proia, R. L. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25 (2005) 11113–21.

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi, K., Li, C., Olivera, A., Bielawski, J., Bielawska, A., Deng, C. X. Proia, R. L. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest 117 (2007) 2993–3006.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y., Perez, G. I., Paris, F., Miranda, S. R., Ehleiter, D., Haimovitz-Friedman, A., Fuks, Z., Xie, Z., Reed, J. C., Schuchman, E. H., Kolesnick, R. N. Tilly, J. L. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6 (2000) 1109–14.

    Article  PubMed  CAS  Google Scholar 

  • Nurminen, T. A., Holopainen, J. M., Zhao, H. Kinnunen, P. K. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc 124 (2002) 12129–34.

    Article  PubMed  CAS  Google Scholar 

  • Otala, M., Pentikainen, M. O., Matikainen, T., Suomalainen, L., Hakala, J. K., Perez, G. I., Tenhunen, M., Erkkila, K., Kovanen, P., Parvinen, M. Dunkel, L. Effects of acid sphingomyelinase deficiency on male germ cell development and programmed cell death. Biol Reprod 72 (2005) 86–96.

    Article  PubMed  CAS  Google Scholar 

  • Perez, G. I., Jurisicova, A., Matikainen, T., Moriyama, T., Kim, M. R., Takai, Y., Pru, J. K., Kolesnick, R. N. Tilly, J. L. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. Faseb J 19 (2005) 860–2.

    PubMed  CAS  Google Scholar 

  • Pier, G. B., Grout, M., Zaidi, T. S., Olsen, J. C., Johnson, L. G., Yankaskas, J. R. Goldberg, J. B. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271 (1996) 64–7.

    Article  PubMed  CAS  Google Scholar 

  • Print, C. G. Loveland, K. L. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays 22 (2000) 423–30.

    Article  PubMed  CAS  Google Scholar 

  • Quintern, L. E., Schuchman, E. H., Levran, O., Suchi, M., Ferlinz, K., Reinke, H., Sandhoff, K. Desnick, R. J. Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. Embo J 8 (1989) 2469–73.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J. L. and et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245 (1989) 1066–73.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J. Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin Cell Dev Biol 15 (2004) 573–81.

    Article  PubMed  Google Scholar 

  • Schissel, S. L., Schuchman, E. H., Williams, K. J. Tabas, I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271 (1996) 18431–6.

    Article  PubMed  CAS  Google Scholar 

  • Schissel, S. L., Keesler, G. A., Schuchman, E. H., Williams, K. J. Tabas, I. The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273 (1998) 18250–9.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K. Ikonen, E. Functional rafts in cell membranes. Nature 387 (1997) 569–72.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J. Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–31.

    Article  PubMed  CAS  Google Scholar 

  • Spence, M. W., Burgess, J. K. Sperker, E. R. Neutral and acid sphingomyelinases: somatotopographical distribution in human brain and distribution in rat organs. A possible relationship with the dopamine system. Brain Res 168 (1979) 543–51.

    Article  PubMed  CAS  Google Scholar 

  • Teichgräber, V., Ulrich, M., Endlich, N., Riethmüller, J., Wilker, B., De Oliveira-Munding, C., van Heeckeren, A. M., Barr, M. L., von Kurthy, G., Schmid, K. W., Weller, M., Tümmler, B., Lang, F., Grassme, H., Döring, G. Gulbins, E. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med (2008) in Press.

    Google Scholar 

  • ten Grotenhuis, E., Demel, R. A., Ponec, M., Boer, D. R., van Miltenburg, J. C. Bouwstra, J. A. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J 71 (1996) 1389–99.

    Article  PubMed  Google Scholar 

  • Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B. Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319 (2008) 1244–7.

    Article  PubMed  CAS  Google Scholar 

  • Veiga, M. P., Arrondo, J. L., Goni, F. M. Alonso, A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76 (1999) 342–50.

    PubMed  CAS  Google Scholar 

  • von Bismarck, P., Garcia Wistadt, C. F., Klemm, K., Winoto-Morbach, S., Uhlig, U., Schutze, S., Adam, D., Lachmann, B., Uhlig, S. Krause, M. F. Improved pulmonary function by acid sphingomyelinase inhibition in a newborn piglet lavage model. Am J Respir Crit Care Med (2008) PMID 18310483.

    Google Scholar 

  • Wu, J., Zhang, L. Wang, X. Maturation and apoptosis of human oocytes in vitro are age-related. Fertil Steril 74 (2000) 1137–41.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C. London, E. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276 (2001) 33540–6.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K. Proia, R. L. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96 (1999) 9142–7.

    Article  PubMed  CAS  Google Scholar 

  • Zahm, J. M., Gaillard, D., Dupuit, F., Hinnrasky, J., Porteous, D., Dorin, J. R. Puchelle, E. Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Physiol 272 (1997) C853–9.

    PubMed  CAS  Google Scholar 

  • Zhang, D. X., Zou, A. P. Li, P. L. Ceramide reduces endothelium-dependent vasodilation by increasing superoxide production in small bovine coronary arteries. Circ Res 88 (2001) 824–31.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. X., Zou, A. P. Li, P. L. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol 284 (2003) H605–12.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Parts of the work described in the present review was supported by German Research Foundation grants DFG 774/21-2 and DFG 774/22-1 to E.W. and DFG 335/16-1 to E.G.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Becker, K.A., Gellhaus, A., Winterhager, E., Gulbins, E. (2008). Ceramide-Enriched Membrane Domains in Infectious Biology and Development. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_20

Download citation

Publish with us

Policies and ethics