Skip to main content

Lysophospholipid Activation of G Protein-Coupled Receptors

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, K., Kohara, T., Nakao, N., Arita, M., Chiba, K., Mishina, T., Sasaki, S., Fujita, T. Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: Discovery of a novel immunosuppressant, FTY720. Bioorganic & Medicinal Chem Lett 5 (1995) 853–856.

    Article  CAS  Google Scholar 

  • Allende, M. L., Dreier, J. L., Mandala, S., Proia, R. L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279 (2004a) 15396–15401.

    Article  CAS  Google Scholar 

  • Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., van Echten-Deckert, G., Hajdu, R., Rosenbach, M., Keohane, C. A., Mandala, S., Spiegel, S., Proia, R. L. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279 (2004b) 52487–52492.

    Article  CAS  Google Scholar 

  • Allende, M. L., Yamashita, T., Proia, R. L. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102 (2003) 3665–3667.

    Article  PubMed  CAS  Google Scholar 

  • An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughlin, S. R., Goetzl, E. J. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417 (1997) 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Anliker, B., Chun, J. Cell surface receptors in lysophospholipid signaling. Semin Cell Dev Biol 15 (2004) 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Anliker, B., Chun, J. Lysophospholipid G protein-coupled receptors. J Biol Chem 279 (2004) 20555–20558.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, J. Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15 (2004) 477–489.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, N., Inagaki, N., Chihara, K., Menager, C., Nakamura, N., Amano, M., Iwamatsu, A., Goshima, Y., Kaibuchi, K. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse, J Biol Chem 275 (2000) 23973–23980.

    CAS  Google Scholar 

  • Azuma, H., Takahara, S., Ichimaru, N., Wang, J. D., Itoh, Y., Otsuki, Y., Morimoto, J., Fukui, R., Hoshiga, M., Ishihara, T., Nonomura, N., Suzuki, S., Okuyama, A., Katsuoka, Y. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res 62 (2002) 1410–1419.

    PubMed  CAS  Google Scholar 

  • Bachner, D., Ahrens, M., Betat, N., Schroder, D., Gross, G. Developmental expression analysis of murine autotaxin (ATX). Mech Dev 84 (1999) 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Bektas, M., Payne, S. G., Liu, H., Goparaju, S., Milstien, S., Spiegel, S. A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. J Cell Biol 169 (2005) 801–811.

    Article  PubMed  CAS  Google Scholar 

  • Benton, A. M., Gerrard, J. M., Michiel, T., Kindom, S. E. Are lysophosphatidic acids or phosphatidic acids involved in stimulus activation coupling in platelets? Blood 60 (1982) 642–649.

    PubMed  CAS  Google Scholar 

  • Berdyshev, E. V., Gorshkova, I. A., Garcia, J. G., Natarajan, V., Hubbard, W. C. Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry. Anal Biochem 339 (2005) 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Bielawski, J., Szulc, Z. M., Hannun, Y. A., Bielawska, A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39 (2006) 82–91.

    Article  PubMed  CAS  Google Scholar 

  • Bolick, D. T., Srinivasan, S., Kim, K. W., Hatley, M. E., Clemens, J. J., Whetzel, A., Ferger, N., Macdonald, T. L., Davis, M. D., Tsao, P. S., Lynch, K. R., Hedrick, C. C. Sphingosine-1-phosphate prevents tumor necrosis factor-{alpha}-mediated monocyte adhesion to aortic endothelium in mice. Arterioscler Thromb Vasc Biol 25 (2005) 976–981.

    Article  PubMed  CAS  Google Scholar 

  • Boucharaba, A., Serre, C. M., Guglielmi, J., Bordet, J. C., Clezardin, P., Peyruchaud, O. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 103 (2006) 9643–9648.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115 (2007) 84–105.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C.A., Zollinger, M., Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277 (2002) 21453–21457.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, D. S., Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32 (2001) 1013–1026.

    Article  PubMed  CAS  Google Scholar 

  • Choi, B. G., Vilahur, G., Viles-Gonzalez, J. F., Badimon, J. J. The role of high-density lipoprotein cholesterol in atherothrombosis. Mt Sinai J Med 73 (2006) 690–701.

    PubMed  Google Scholar 

  • Chun, J. The first cloned and identified lysophospholipid (LP) receptor gene, vzg-1: implications for related receptors and the nervous system. Adv Exp Med Biol 469 (1999) 357–362.

    PubMed  CAS  Google Scholar 

  • Chun, J. Immunology. The sources of a lipid conundrum. Science 316 (2007) 208–210.

    Article  PubMed  Google Scholar 

  • Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., Pyne, S., Tigyi, G. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 54 (2002) 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J., Rosen, H. Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des 12 (2006) 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, J. J., Davis, M. D., Lynch, K. R., Macdonald, T.L. Synthesis of para-alkyl aryl amide analogues of sphingosine-1-phosphate: discovery of potent S1P receptor agonists. Bioorg Med Chem Lett 13 (2003) 3401–3404.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, J. J., Davis, M. D., Lynch, K. R., Macdonald, T. L. Synthesis of benzimidazole based analogues of sphingosine-1-phosphate: discovery of potent, subtype-selective S1P4 receptor agonists. Bioorg Med Chem Lett 14 (2004) 4903–4906.

    Article  PubMed  CAS  Google Scholar 

  • Contos, J. J., Chun, J. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern. Gene 267 (2001) 243–253.

    Article  PubMed  CAS  Google Scholar 

  • Contos, J. J., Fukushima, N., Weiner, J. A., Kaushal, D., Chun, J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97 (2000a) 13384–13389.

    Article  CAS  Google Scholar 

  • Contos, J. J., Ishii, I., Chun, J. Lysophosphatidic acid receptors. Mol Pharmacol 58 (2000b) 1188–1196.

    CAS  Google Scholar 

  • Contos, J. J., Ishii, I., Fukushima, N., Kingsbury, M. A., Ye, X., Kawamura, S., Brown, J. H., Chun, J. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22 (2002) 6921–6929.

    Article  PubMed  CAS  Google Scholar 

  • Coussin, F., Scott, R. H., Wise, A., Nixon, G. F. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res 91 (2002) 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Croset, M., Brossard, N., Polette, A., Lagarde, M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345 Pt 1 (2000) 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Das, A. K., Hajra, A. K. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24 (1989) 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. D., Clemens, J. J., Macdonald, T. L., Lynch, K. R. Sphingosine 1-phosphate analogs as receptor antagonists. J Biol Chem 280 (2005) 9833–9841.

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst, E., Decrock, E., De Bock, M., Yamasaki, H., Naus, C. C., Evans, W. H., Leybaert, L. Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18 (2007) 34–46.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, A., Casas, J., Llebaria, A., Abad, J. L., Fabrias, G. Chemical tools to investigate sphingolipid metabolism and functions. ChemMedChem 2 (2007) 580–606.

    Article  PubMed  CAS  Google Scholar 

  • Dubin, A. E., Bahnson, T., Weiner, J. A., Fukushima, N., Chun, J. Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts. J Neurosci 19 (1999) 1371–1381.

    PubMed  CAS  Google Scholar 

  • Dworkin, R. H., O'Connor, A. B., Backonja, M., Farrar, J. T., Finnerup, N. B., Jensen, T. S., Kalso, E. A., Loeser, J. D., Miaskowski, C., Nurmikko, T. J., Portenoy, R. K., Rice, A. S., Stacey, B. R., Treede, R. D., Turk, D. C., Wallace, M. S. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132 (2007) 237–251.

    Article  PubMed  CAS  Google Scholar 

  • Eichholtz, T., Jalink, K., Fahrenfort, I., Moolenaar, W. H. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291 ( Pt 3) (1993) 677–680.

    PubMed  CAS  Google Scholar 

  • Escalante-Alcalde, D., Hernandez, L., Le Stunff, H., Maeda, R., Lee, H.S., Jr-Gang-Cheng, Sciorra, V. A., Daar, I., Spiegel, S., Morris, A. J., Stewart, C. L. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 130 (2003) 4623–4637.

    Google Scholar 

  • Estivill-Torrus, G., Llebrez-Zayas, P., Matas-Rico, E., Santin, L., Pedraza, C., De Diego, I., Del Arco, I., Fernandez-Llebrez, P., Chun, J., De Fonseca, F. R. Absence of LPA1 Signaling results in defective cortical development. Cereb Cortex (2007).

    Google Scholar 

  • Etienne-Manneville, S., Hall, A. Rho GTPases in cell biology. Nature 420 (2002) 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, G., Giganti, A., Coge, F., Bertaux, F., Thiam, K., Boutin, J. A. Functional invalidation of the autotaxin gene by a single amino acid mutation in mouse is lethal. FEBS Lett 581 (2007) 3572–3578.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, D. J., Nusser, N., Virag, T., Yokoyama, K., Wang, D., Baker, D. L., Bautista, D., Parrill, A. L., Tigyi, G. Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol 60 (2001) 776–784.

    PubMed  CAS  Google Scholar 

  • Fujino, M., Funeshima, N., Kitazawa, Y., Kimura, H., Amemiya, H., Suzuki, S., Li, X. K. Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305 (2003) 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro, J., Kudou, S., Iwai, S., Takahashi, M., Hakamata, Y., Kinoshita, M., Iwanami, S., Izawa, S., Yasue, T., Hashizume, K., Murakami, T., Kobayashi, E. Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine A for rat renal transplantation. Transplantation 82 (2006) 804–812.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, Y., Kihara, A., Igarashi, Y. Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 309 (2003) 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N., Ishii, I., Contos, J. J., Weiner, J. A., Chun, J. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 41 (2001) 507–534.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N., Kimura, Y., Chun, J. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci USA 95 (1998) 6151–6156.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N., Shano, S., Moriyama, R., Chun, J. Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem Int 50 (2007) 302–307.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, N., Weiner, J. A., Chun, J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 228 (2000) 6–18.

    Article  PubMed  CAS  Google Scholar 

  • Gardell, S. E., Dubin, A. E., Chun, J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12 (2006) 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Goetzl, E. J., Kong, Y., Mei, B. Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J Immunol 162 (1999) 2049–2056.

    PubMed  CAS  Google Scholar 

  • Goetzl, E. J., Kong, Y., Voice, J. K. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J Immunol 164 (2000) 4996–4999.

    PubMed  CAS  Google Scholar 

  • Graeler, M., Goetzl, E. J. Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells, Faseb J 16 (2002) 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  • Graler, M. H., Goetzl, E. J. Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 1582 (2002) 168–174.

    PubMed  CAS  Google Scholar 

  • Hama, K., Aoki, J., Bandoh, K., Inoue, A., Endo, T., Amano, T., Suzuki, H., Arai, H. Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sci 79 (2006) 1736–1740.

    Article  PubMed  CAS  Google Scholar 

  • Hama, K., Aoki, J., Inoue, A., Endo, T., Amano, T., Motoki, R., Kanai, M., Ye, X., Chun, J., Matsuki, N., Suzuki, H., Shibasaki, M., Arai, H. Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 77 (2007) 954–959.

    Article  PubMed  CAS  Google Scholar 

  • Hanel, P., Andreani, P., Graler, M. H. Erythrocytes store and release sphingosine 1-phosphate in blood. Faseb J 21 (2007) 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  • Harada, J., Foley, M., Moskowitz, M. A., Waeber, C. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88 (2004) 1026–1039.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, S. M., Reavill, C., Brown, G., Brown, J. T., Cluderay, J. E., Crook, B., Davies, C. H., Dawson, L. A., Grau, E., Heidbreder, C., Hemmati, P., Hervieu, G., Howarth, A., Hughes, Z. A., Hunter, A. J., Latcham, J., Pickering, S., Pugh, P., Rogers, D. C., Shilliam, C. S., Maycox, P. R. LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol Cell Neurosci 24 (2003) 1170–1179.

    Article  PubMed  CAS  Google Scholar 

  • Hecht, J. H., Weiner, J. A., Post, S. R., Chun, J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135 (1996) 1071–1083.

    Article  PubMed  CAS  Google Scholar 

  • Herr, D. R., Chun, J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets 8 (2007) 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Herr, D. R., Grillet, N., Schwander, M., Rivera, R., Muller, U., Chun, J. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci 27 (2007) 1474–1478.

    Article  PubMed  CAS  Google Scholar 

  • Hill, C. S., Oh, S. Y., Schmidt, S. A., Clark, K. J., Murray, A. W. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade. Biochem J 303 (Pt 2) (1994) 475–479.

    PubMed  Google Scholar 

  • Ho, J. W., Man, K., Sun, C. K., Lee, T. K., Poon, R. T., Fan, S. T. Effects of a novel immunomodulating agent, FTY720, on tumor growth and angiogenesis in hepatocellular carcinoma. Mol Cancer Ther 4 (2005) 1430–1438.

    Article  PubMed  CAS  Google Scholar 

  • Hobson, J. P., Rosenfeldt, H. M., Barak, L. S., Olivera, A., Poulton, S., Caron, M. G., Milstien, S., Spiegel, S. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291 (2001) 1800–1803.

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth, G., Osborne, D. A., Pham, T. T., Fells, J. I., Hutchinson, G., Milligan, G., Parrill, A. L. A single amino acid determines preference between phospholipids and reveals length restriction for activation of the S1P4 receptor. BMC Biochem 5 (2004) 12.

    Article  PubMed  CAS  Google Scholar 

  • Hong, G., Baudhuin, L. M., Xu, Y. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett 460 (1999) 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Hooks, S. B., Santos, W. L., Im, D. S., Heise, C. E., Macdonald, T. L., Lynch, K. R. Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor independent. J Biol Chem 276 (2001) 4611–4621.

    Article  PubMed  CAS  Google Scholar 

  • Hozumi, Y., Kobayashi, E., Miyata, M., Fujimura, A. Immunotherapy for experimental rat autoimmune thyroiditis using a novel immunosuppressant, FTY720. Life Sci 65 (1999) 1739–1745.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M. C., Graeler, M., Shankar, G., Spencer, J., Goetzl, E. J. Lysophospholipid mediators of immunity and neoplasia. Biochim Biophys Acta 1582 (2002) 161–167.

    PubMed  CAS  Google Scholar 

  • Im, D. S., Clemens, J., Macdonald, T. L., Lynch, K. R. Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): structure-activity relationship of sphingosine1-phosphate receptors. Biochemistry 40 (2001) 14053–14060.

    Article  PubMed  CAS  Google Scholar 

  • Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., Heavens, R. P., Rigby, M. R., Hla, T., Mandala, S., McAllister, G., George, S. R., Lynch, K. R. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275 (2000) 14281–14286.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M., Rashid, M. H., Fujita, R., Contos, J. J., Chun, J., Ueda, H. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10 (2004) 712–718.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, I., Contos, J. J., Fukushima, N., Chun, J. Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 58 (2000) 895–902.

    PubMed  CAS  Google Scholar 

  • Ishii, I., Friedman, B., Ye, X., Kawamura, S., McGiffert, C., Contos, J. J., Kingsbury, M. A., Zhang, G., Brown, J. H., Chun, J. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 276 (2001) 33697–33704.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, I., Fukushima, N., Ye, X., Chun, J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73 (2004) 321–354.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J., Kingsbury, M. A., Yang, A. H., Zhang, G., Brown, J. H., Chun, J. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem 277 (2002) 25152–25159.

    Article  PubMed  CAS  Google Scholar 

  • Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., Walsh, F. S., Pangalos, M. N., Arimura, N., Kaibuchi, K., Zalc, B., Lubetzki, C. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25 (2005) 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, P. S., Bektas, M., Olivera, A., Gonzalez-Espinosa, C., Proia, R. L., Rivera, J., Milstien, S., Spiegel, S. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 199 (2004) 959–970.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, P. S., Rosenfeldt, H. M., Milstien, S., Spiegel, S. The roles of sphingosine-1-phosphate in asthma. Mol Immunol 38 (2002) 1239–1245.

    Article  PubMed  CAS  Google Scholar 

  • Karliner, J. S. Mechanisms of cardioprotection by lysophospholipids. J Cell Biochem 92 (2004) 1095–1103.

    Article  PubMed  CAS  Google Scholar 

  • Kharel, Y., Lee, S., Snyder, A. H., Sheasley-O'Neill S. L., Morris, M. A., Setiady, Y., Zhu, R., Zigler, M. A., Burcin, T. L., Ley, K., Tung, K. S., Engelhard, V. H., Macdonald, T. L., Pearson-White, S., Lynch, K. R. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J Biol Chem 280 (2005) 36865–36872.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, A., Ohmori, T., Ohkawa, R., Madoiwa, S., Mimuro, J., Murakami, T., Kobayashi, E., Hoshino, Y., Yatomi, Y., Sakata, Y. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells 25 (2007) 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Tomura, H., Mogi, C., Kuwabara, A., Ishiwara, M., Shibasawa, K., Sato, K., Ohwada, S., Im, D. S., Kurose, H., Ishizuka, T., Murakami, M., Okajima, F. Sphingosine 1-phosphate receptors mediate stimulatory and inhibitory signalings for expression of adhesion molecules in endothelial cells. Cell Signal 18 (2006) 841–850.

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury, M. A., Rehen, S. K., Contos, J. J., Higgins, C. M., Chun, J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6 (2003) 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  • Kohama, T., Olivera, A., Edsall, L., Nagiec, M. M., Dickson, R., Spiegel, S. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273 (1998) 23722–23728.

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Belyantseva, I. A., Skoura, A., Frolenkov, G. I., Starost, M. F., Dreier, J. L., Lidington, D., Bolz, S. S., Friedman, T. B., Hla, T., Proia, R. L. Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biol Chem 282 (2007) 10690–10696.

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Mi, Y., Liu, Y., Sasaki, T., Allende, M. L., Wu, Y. P., Yamashita, T., Proia, R. L. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279 (2004) 29367–29373.

    Article  PubMed  CAS  Google Scholar 

  • Kupperman, E., An, S., Osborne, N., Waldron, S., Stainier, D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406 (2000) 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Kurose, S., Ikeda, E., Tokiwa, M., Hikita, N., Mochizuki, M. Effects of FTY720, a novel immunosuppressant, on experimental autoimmune uveoretinitis in rats. Exp Eye Res 70 (2000) 7–15.

    Article  PubMed  CAS  Google Scholar 

  • LaMontagne, K., Littlewood-Evans, A., Schnell, C., O'Reilly, T., Wyder, L., Sanchez, T., Probst, B., Butler, J., Wood, A., Liau, G., Billy, E., Theuer, A., Hla, T., Wood, J. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66 (2006) 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Lan, Y. Y., De Creus, A., Colvin, B. L., Abe, M., Brinkmann, V., Coates, P. T., Thomson, A. W. The sphingosine-1-phosphate receptor agonist FTY720 modulates dendritic cell trafficking in vivo. Am J Transplant 5 (2005) 2649–2659.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. W., Rivera, R., Gardell, S., Dubin, A. E., Chun, J. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281 (2006) 23589–23597.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. J., van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S., Hla, T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. ,Science 279 (1998) 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., Shenoy, S. K. Transduction of receptor signals by beta-arrestins. Science 308 (2005) 512–517.

    Article  PubMed  CAS  Google Scholar 

  • Levkau, B., Hermann, S., Theilmeier, G., van der Giet, M., Chun, J., Schober, O., Schafers, M. High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110 (2004) 3355–3359.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Ye, X., Mahanivong, C., Bian, D., Chun, J., Huang, S. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 280 (2005) 10564–10571.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Sugiura, M., Nava, V. E., Edsall, L. C., Kono, K., Poulton, S., Milstien, S., Kohama, T., Spiegel, S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275 (2000a) 19513–19520.

    Article  CAS  Google Scholar 

  • Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., Rosenfeldt, H. M., Nava, V. E., Chae, S. S., Lee, M. J., Liu, C. H., Hla, T., Spiegel, S., Proia, R. L. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106 (2000b) 951–961.

    Article  CAS  Google Scholar 

  • Lynch, K. R., Hopper, D. W., Carlisle, S. J., Catalano, J. G., Zhang, M., MacDonald, T. L. Structure/activity relationships in lysophosphatidic acid: the 2-hydroxyl moiety. Mol Pharmacol 52 (1997) 75–81.

    PubMed  CAS  Google Scholar 

  • MacLennan, A. J., Benner, S. J., Andringa, A., Chaves, A. H., Rosing, J. L., Vesey, R., Karpman, A. M., Cronier, S. A., Lee, N., Erway, L. C., Miller, M. L. The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function. Hear Res 220 (2006) 38–48.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., Anderson, K. J., Roper, S. N., Lee, N. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14 (2001) 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G. J., Card, D., Keohane, C., Rosenbach, M., Hale, J., Lynch, C. L., Rupprecht, K., Parsons, W., Rosen, H. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296 (2002) 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L., Cyster, J. G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427 (2004) 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, M., Imayoshi, T., Chiba, K., Okumoto, T. Effect of FTY720, a novel immunosuppressant, on adjuvant-induced arthritis in rats. Inflamm Res 49 (2000) 404–410.

    Article  PubMed  CAS  Google Scholar 

  • McGiffert, C., Contos, J. J., Friedman, B., Chun, J. Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1-3) in angiogenesis. FEBS Lett 531 (2002) 103–108.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, T. M., Pontsler, A. V., Silva, A. R., St Hilaire, A., Xu, Y., Hinshaw, J. C., Zimmerman, G. A., Hama, K., Aoki, J., Arai, H., Prestwich, G. D. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA 100 (2003) 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf, D., Jakobs, K. H. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768 (2007) 923–940.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. B., May, C., McGill, M., Roifman, C. M., Mellors, A. A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res 48 (1988) 1066–1071.

    PubMed  CAS  Google Scholar 

  • Mills, G. B., Moolenaar, W. H. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3 (2003) 582–591.

    Article  PubMed  CAS  Google Scholar 

  • Min, J. K., Yoo, H. S., Lee, E. Y., Lee, W J., Lee, Y.M. Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase. Anal Biochem 303 (2002) 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., Proia, R. L. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25 (2005) 11113–11121.

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar, W. H., van Meeteren, L. A., Giepmans, B. N. The ins and outs of lysophosphatidic acid signaling. Bioessays 26 (2004) 870–881.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y., Perez, G. I., Paris, F., Miranda, S. R., Ehleiter, D., Haimovitz-Friedman, A., Fuks, Z., Xie, Z., Reed, J. C., Schuchman, E. H., Kolesnick, R. N., Tilly, J. L. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6 (2000) 1109–1114.

    Article  PubMed  CAS  Google Scholar 

  • Moumtzi, A., Trenker, M., Flicker, K., Zenzmaier, E., Saf, R., Hermetter, A. Import and fate of fluorescent analogs of oxidized phospholipids in vascular smooth muscle cells. J Lipid Res 48 (2007) 565–582.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N., Sato, K., Kon, J., Tomura, H., Okajima, F. Quantitative measurement of sphingosine 1-phosphate by radioreceptor-binding assay. Anal Biochem 282 (2000) 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Murph, M., Tanaka, T., Liu, S., Mills, G. B. Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin Cancer Res 12 (2006) 6598–5602.

    Article  PubMed  CAS  Google Scholar 

  • Neves, S. R., Ram, P. T., Iyengar, R. G protein pathways. Science 296 (2002) 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  • Nofer, J. R., van der Giet, M., Tolle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H. A., Tietge, U. J., Godecke, A., Ishii, I., Kleuser, B., Schafers, M., Fobker, M., Zidek, W., Assmann, G., Chun, J., Levkau, B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113 (2004) 569–581.

    PubMed  CAS  Google Scholar 

  • Ohta, H., Sato, K., Murata, N., Damirin, A., Malchinkhuu, E., Kon, J., Kimura, T., Tobo, M., Yamazaki, Y., Watanabe, T., Yagi, M., Sato, M., Suzuki, R., Murooka, H., Sakai, T., Nishitoba, T., Im, D. S., Nochi, H., Tamoto, K., Tomura, H., Okajima, F. Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64 (2003) 994–1005.

    Article  PubMed  CAS  Google Scholar 

  • Okajima, F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582 (2002) 132–137.

    PubMed  CAS  Google Scholar 

  • Okamoto, H., Takuwa, N., Yokomizo, T., Sugimoto, N., Sakurada, S., Shigematsu, H., Takuwa, Y. Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20 (2000) 9247–9261.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, H., Hirata, D., Kamimura, T., Sato, H., Iwamoto, M., Yoshio, T., Masuyama, J., Fujimura, A., Kobayashi, E., Kano, S., Minota, S. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol 29 (2002) 707–716.

    PubMed  CAS  Google Scholar 

  • Okusa, M. D., Ye, H., Huang, L., Sigismund, L., Macdonald, T., Lynch, K.R. Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 285 (2003) F565–F574.

    PubMed  Google Scholar 

  • Olivera, A., Rosenthal, J., Spiegel, S. Sphingosine kinase from Swiss 3T3 fibroblasts: a convenient assay for the measurement of intracellular levels of free sphingoid bases. Anal Biochem 223 (1994) 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., Lin, C. Y., Hla, T. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282 (2007) 9082–9089.

    Article  PubMed  CAS  Google Scholar 

  • Pan, S., Mi, Y., Pally, C., Beerli, C., Chen, A., Guerini, D., Hinterding, K., Nuesslein-Hildesheim, B., Tuntland, T., Lefebvre, S., Liu, Y., Gao, W., Chu, A., Brinkmann, V., Bruns, C., Streiff, M., Cannet, C., Cooke, N., Gray, N. A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem Biol 13 (2006) 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Pappu, R., Schwab, S. R., Cornelissen, I., Pereira, J. P., Regard, J. B., Xu, Y., Camerer, E., Zheng, Y. W., Huang, Y., Cyster, J. G., Coughlin, S.R. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316 (2007) 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Parrill, A. L. Structural characteristics of lysophosphatidic acid biological targets. Biochem Soc Trans 33 (2005) 1366–1369.

    Article  PubMed  CAS  Google Scholar 

  • Parrill, A. L., Wang, D., Bautista, D. L., van Brocklyn, J. R., Lorincz, Z., Fischer, D. J., Baker, D. L., Liliom, K., Spiegel, S., Tigyi, G. Identification of Edg1 receptor residues that recognize sphingosine 1-phosphate. J Biol Chem 275 (2000) 39379–39384.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, K. L., Premont, R. T., Lefkowitz, R J. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3 (2002) 639–650.

    Article  PubMed  CAS  Google Scholar 

  • Pyne, N. J., Waters, C. M., Long, J. S., Moughal, N. A., Tigyi, G., Pyne, S. Receptor tyrosine kinase-G-protein coupled receptor complex signaling in mammalian cells. Adv Enzyme Regul 47 (2007) 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Radeff-Huang, J., Seasholtz, T .M., Matteo, R. G., Brown, J. H. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92 (2004) 949–966.

    Article  PubMed  CAS  Google Scholar 

  • Ramakers, G. J., Moolenaar, W. H. Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res 245 (1998) 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, R., Chun, J. Potential therapeutic roles of lysophospholipid signaling in autoimmune-related diseases. Future Lipidol 2 (2007) 535–545.

    Article  CAS  Google Scholar 

  • Rizza, C., Leitinger, N., Yue, J., Fischer, D. J., Wang, D. A., Shih, P. T., Lee, H., Tigyi, G., Berliner, J. A. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab Invest 79 (1999) 1227–1235.

    PubMed  CAS  Google Scholar 

  • Rosen, H., Alfonso, C., Surh, C. D., McHeyzer-Williams, M. G. Rapid induction of medullary thymocyte phenotypic maturation and egress inhibition by nanomolar sphingosine 1-phosphate receptor agonist. Proc Natl Acad Sci USA 100 (2003) 10907–10912.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H., Goetzl, E. J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5 (2005) 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Rouach, N., Pebay, A., Meme, W., Cordier, J., Ezan, P., Etienne, E., Giaume, C., Tence, M. S1P inhibits gap junctions in astrocytes: involvement of Gi and Rho GTPase/ROCK. Eur J Neurosci 23 (2006) 1453–1464.

    Article  PubMed  Google Scholar 

  • Saba, J. D., Hla, T. Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94 (2004) 724–734.

    Article  PubMed  CAS  Google Scholar 

  • Sanna, M. G., Liao, J., Jo, E., Alfonso, C., Ahn, M. Y., Peterson, M. S., Webb, B., Lefebvre, S., Chun, J., Gray, N., Rosen, H. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 279 (2004) 13839–13848.

    Article  PubMed  CAS  Google Scholar 

  • Sanna, M. G., Wang, S. K., Gonzalez-Cabrera, P. J., Don, A., Marsolais, D., Matheu, M. P., Wei, S. H., Parker, I., Jo, E., Cheng, W. C., Cahalan, M. D., Wong, C. H., Rosen, H. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2 (2006) 434–441.

    Article  PubMed  CAS  Google Scholar 

  • Sato, K., Malchinkhuu, E., Horiuchi, Y., Mogi, C., Tomura, H., Tosaka, M., Yoshimoto, Y., Kuwabara, A., Okajima, F. HDL-like lipoproteins in cerebrospinal fluid affect neural cell activity through lipoprotein-associated sphingosine 1-phosphate. Biochem Biophys Res Commun 359 (2007) 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Sawicka, E., Zuany-Amorim, C., Manlius, C., Trifilieff, A., Brinkmann, V., Kemeny, D. M., Walker, C. Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. J Immunol 171 (2003) 6206–6214.

    PubMed  CAS  Google Scholar 

  • Schmahl, J., Raymond, C. S., Soriano, P. PDGF signaling specificity is mediated through multiple immediate early genes. Nat Genet 39 (2007) 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, S. R., Cyster, J. G. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8 (2007) 1295–1301.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, S. R., Pereira, J. P., Matloubian, M., Xu, Y., Huang, Y., Cyster, J. G. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309 (2005) 1735–1739.

    Article  PubMed  CAS  Google Scholar 

  • Sen, S., Smeby, R. R., Bumpus, F. M. Antihypertensive effect of an isolated phospholipid. Am J Physiol 214 (1968) 337–341.

    PubMed  CAS  Google Scholar 

  • Shah, B. H., Catt, K. J. Roles of LPA3 and COX-2 in implantation. Trends Endocrinol Metab 16 (2005) 397–399.

    Article  PubMed  CAS  Google Scholar 

  • Shano, S., Moriyama, R., Chun, J., Fukushima, N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA(1). Neurochem Int 52 (2008) 216–220.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, H., Takahashi, M., Kaneko, T., Murakami, T., Hakamata, Y., Kudou, S., Kishi, T., Fukuchi, K., Iwanami, S., Kuriyama, K., Yasue, T., Enosawa, S., Matsumoto, K., Takeyoshi, I., Morishita, Y., Kobayashi, E. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation 111 (2005) 222–229.

    Article  PubMed  CAS  Google Scholar 

  • Siess, W. Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim Biophys Acta 1582 (2002) 204–215.

    PubMed  CAS  Google Scholar 

  • Siess, W., Essler, M., Brandl, R. Lysophosphatidic acid and sphingosine 1-phosphate: two lipid villains provoking cardiovascular diseases? IUBMB Life 49 (2000) 67–71.

    Google Scholar 

  • Siess, W., Zangl, K. J., Essler, M., Bauer, M., Brandl, R., Corrinth, C., Bittman, R., Tigyi, G., Aepfelbacher, M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci USA 96 (1999) 6931–6936.

    Article  PubMed  CAS  Google Scholar 

  • Singleton, P. A., Dudek, S. M., Chiang, E. T., Garcia, J. G. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. Faseb J 19 (2005) 1646–1656.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, S. D., Nicole, O., Peavy, R. D., Montoya, L. M., Lee, C. J., Murphy, T. J., Traynelis, S. F., Hepler, J. R. Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64 (2003) 1199–1209.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, S., Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4 (2003) 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Stoffel, W., Assmann, G., Binczek, E. Metabolism of sphingosine bases. 13. Enzymatic synthesis of 1-phosphate esters of 4t-sphingenine (sphingosine), sphinganine (dihydrosphingosine), 4-hydroxysphinganine (phytosphingosine) and 3-dehydrosphinganine by erythrocytes. Hoppe Seylers Z Physiol Chem 351 (1970) 635–642.

    PubMed  CAS  Google Scholar 

  • Sugimoto, N., Takuwa, N., Okamoto, H., Sakurada, S., Takuwa, Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol 23 (2003) 1534–1545.

    Article  PubMed  CAS  Google Scholar 

  • Sugo, T., Tachimoto, H., Chikatsu, T., Murakami, Y., Kikukawa, Y., Sato, S., Kikuchi, K., Nagi, T., Harada, M., Ogi, K., Ebisawa, M., Mori, M. Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 341 (2006) 1078–1087.

    Article  PubMed  CAS  Google Scholar 

  • Sukocheva, O., Wadham, C., Holmes, A., Albanese, N., Verrier, E., Feng, F., Bernal, A., Derian, C. K., Ullrich, A., Vadas, M. A., Xia, P. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173 (2006) 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Yan, H., Li, X. K., Amemiya, H., Suzuki, S., Hiromitsu, K. Prevention of experimentally induced autoimmune type I diabetes in rats by the new immunosuppressive reagent FTY720. Transplant Proc 30 (1998) 1044–1045.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Enosawa, S., Kakefuda, T., Shinomiya, T., Amari, M., Naoe, S., Hoshino, Y., Chiba, K. A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 61 (1996) 200–205.

    Article  PubMed  CAS  Google Scholar 

  • Tamaruya, Y., Suzuki, M., Kamura, G., Kanai, M., Hama, K., Shimizu, K., Aoki, J., Arai, H., Shibasaki, M. Identifying specific conformations by using a carbohydrate scaffold: discovery of subtype-selective LPA-receptor agonists and an antagonist. Angew Chem Int Ed Engl 43 (2004) 2834–2837.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Okudaira, S., Kishi, Y., Ohkawa, R., Iseki, S., Ota, M., Noji, S., Yatomi, Y., Aoki, J., Arai, H. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281 (2006) 25822–25830.

    Article  PubMed  CAS  Google Scholar 

  • Tedesco-Silva, H., Mourad, G., Kahan, B. D., Boira, J. G., Weimar, W., Mulgaonkar, S., Nashan, B., Madsen, S., Charpentier, B., Pellet, P. and Vanrenterghem, Y. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 79 (2005) 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann, J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hildebrand, R., Schulz, R., Heusch, G., Haude, M., von Wnuck Lipinski, K., Herzog, C., Schmitz, M., Erbel, R., Chun, J., Levkau, B. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114 (2006) 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  • Tigyi, G., Hong, L., Yakubu, M., Parfenova, H., Shibata, M. and Leffler, C. W. Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am J Physiol 268 (1995) H2048–H2055.

    PubMed  CAS  Google Scholar 

  • Tilly, J. L. Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2 (2001) 838–848.

    Article  PubMed  CAS  Google Scholar 

  • Tokumura, A., Fukuzawa, K., Tsukatani, H. Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids 13 (1978) 572–574.

    Article  PubMed  CAS  Google Scholar 

  • Tolle, M., Levkau, B., Keul, P., Brinkmann, V., Giebing, G., Schonfelder, G., Schafers, M., von Wnuck Lipinski, K., Jankowski, J., Jankowski, V., Chun, J., Zidek, W., Van der Giet, M. Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96 (2005) 913–920.

    Article  PubMed  CAS  Google Scholar 

  • Tyndall, J. D., Sandilya, R. GPCR agonists and antagonists in the clinic. Med Chem 1 (2005) 405–421.

    Article  PubMed  CAS  Google Scholar 

  • van Brocklyn, J. R., Graler, M. H., Bernhardt, G., Hobson, J. P., Lipp, M., Spiegel, S. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95 (2000) 2624–2629.

    PubMed  Google Scholar 

  • van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T., Moolenaar, W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59 (1989) 45–54.

    Article  PubMed  Google Scholar 

  • van Leeuwen, F. N., Giepmans, B. N., van Meeteren, L. A., Moolenaar, W. H. Lysophosphatidic acid: mitogen and motility factor. Biochem Soc Trans 31 (2003) 1209–1212.

    Article  PubMed  Google Scholar 

  • van Meeteren, L. A., Ruurs, P., Stortelers, C., Bouwman, P., van Rooijen, M. A., Pradere, J. P., Pettit, T. R., Wakelam, M. J., Saulnier-Blache, J. S., Mummery, C. L., Moolenaar, W. H., Jonkers, J. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26 (2006) 5015–5022.

    Article  PubMed  CAS  Google Scholar 

  • van Nieuw Amerongen, G. P., Vermeer, M. A., van Hinsbergh, V. W. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol 20 (2000) E127–E133.

    PubMed  Google Scholar 

  • Waeber, C., Blondeau, N., Salomone, S. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 17 (2004) 365–382.

    Article  PubMed  CAS  Google Scholar 

  • Webb, M., Tham, C. S., Lin, F. F., Lariosa-Willingham, K., Yu, N., Hale, J., Mandala, S., Chun, J., Rao, T. S. Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol 153 (2004) 108–121.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, J. A., Fukushima, N., Contos, J. J., Scherer, S. S., Chun, J. Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci 21 (2001) 7069–7078.

    PubMed  CAS  Google Scholar 

  • Wong, R. C., Tellis, I., Jamshidi, P., Pera, M., Pebay, A. Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev (2007).

    Google Scholar 

  • Xia, P., Gamble, J. R., Rye, K. A., Wang, L., Hii, C. S., Cockerill, P., Khew-Goodall, Y., Bert, A. G., Barter, P. J., Vadas, M.A. Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci USA 95 (1998) 14196–14201.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y. J., Aziz, O. A., Bhugra, P., Arneja, A. S., Mendis, M. R., Dhalla, N. S. Potential role of lysophosphatidic acid in hypertension and atherosclerosis. Can J Cardiol 19 (2003) 1525–1536.

    PubMed  CAS  Google Scholar 

  • Yatomi, Y., Welch, R. J., Igarashi, Y. Distribution of sphingosine 1-phosphate, a bioactive sphingolipid, in rat tissues. FEBS Lett 404 (1997) 173–174.

    Article  PubMed  CAS  Google Scholar 

  • Ye, X., Hama, K., Contos, J. J., Anliker, B., Inoue, A., Skinner, M. K., Suzuki, H., Amano, T., Kennedy, G., Arai, H., Aoki, J., Chun, J. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435 (2005) 104–108.

    Article  PubMed  CAS  Google Scholar 

  • Yokoo, E., Yatomi, Y., Takafuta, T., Osada, M., Okamoto, Y., Ozaki, Y. Sphingosine 1-phosphate inhibits migration of RBL-2H3 cells via S1P2: cross-talk between platelets and mast cells. J Biochem (Tokyo) 135 (2004) 673–681.

    CAS  Google Scholar 

  • Yuan, X. B., Jin, M., Xu, X., Song, Y. Q., Wu, C. P., Poo, M. M., Duan, S. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5 (2003) 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Zemann, B., Kinzel, B., Muller, M., Reuschel, R., Mechtcheriakova, D., Urtz, N., Bornancin, F., Baumruker, T., Billich, A. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107 (2006) 1454–1458.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Desai, N. N., ,Olivera, A., Seki, T., Brooker, G., Spiegel, S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114 (1991) 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Kong, Y., Goetzl, E. J. Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J Immunol 166 (2001) 2317–2322.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Voice, J. K., Kong, Y., Goetzl, E. J. Altered expression and functional profile of lysophosphatidic acid receptors in mitogen-activated human blood T lymphocytes. Faseb J 14 (2000) 2387–2389.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mutoh, T., Chun, J. (2008). Lysophospholipid Activation of G Protein-Coupled Receptors. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_10

Download citation

Publish with us

Policies and ethics