Skip to main content

A Memory Based Communication in the Co-simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 12))

Many complex systems require that computational models of different nature are used for their sub-systems. The evaluation of the dynamics of each one of these models requires the use of different codes, which in turn use different time integration algorithms. The work presented here proposes a co-simulation environment that uses an integrated memory shared communication methodology between the multibody and finite element codes. The methodology is general being applicable to the dynamic co-simulation of models running in different codes. The benefits and drawbacks of the proposed methodology and of its accuracy and suitability are supported by the application to a real operation scenario of a high-speed catenary-pantograph system for which experimental test data is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold M, Simeon B (2000) Pantograph and catenary dynamics: a benchmark problem and its numerical solution. Appl Numer Math 34(4):345–362

    Article  MATH  MathSciNet  Google Scholar 

  2. Balestrino A, Bruno O, Landi A, Sani L (2000) Innovative solutions for overhead catenary-pantograph system: wire actuated control and observed contact force. Vehicle Syst Dyn 33(2):69–89

    Article  Google Scholar 

  3. Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comp Meth Appl Mech Eng 1:1–16

    Article  MATH  MathSciNet  Google Scholar 

  4. Becker K, Konig A, Resch U, Zweig B-W (1995) Hochgeschwindigkeitsfahrleitung — ein thema fur die forschung (the high-speed catenary — a subject for research). ETR - Eisenbahantechnische Rundschau 44(1–2):64–72

    Google Scholar 

  5. Bocciolone M, Resta F, Rocchi D, Tosi A, Collina A (2006) Pantograph aerodynamic effects on the pantograph-catenary interaction. Vehicle Syst Dyn 44(S1):560–570

    Article  Google Scholar 

  6. Collina A, Bruni S (2002) Numerical simulation of pantograph-overhead equipment interaction. Vehicle Syst Dyn 38(4):261–291

    Article  Google Scholar 

  7. Collina A, Melzi S, Facchinetti A (2002) On the prediction of wear of contact wire in OHE lines: a proposed model. Vehicle Syst Dyn 37(S1):579–592

    Google Scholar 

  8. Dahlberg T (2006) Moving force on an axially loaded beam — with applications to a railway overhead contact wire. Vehicle Syst Dyn 44(8):631–644

    Article  Google Scholar 

  9. Fernandez J-A, Pastor M (1998) Analisis mediante elementos finites del acoplamiento dinamico catenaria-pantógrafo (Finite element analysis of the dynamic coupling catenary-pantograph). Ministério de Fomento, Centro de Estu-dos y Experimentacion de Obras Pūblicas, Madrid, Spain

    Google Scholar 

  10. Gardou M (1984) Etude du comportement dynamique de l'ensemble pantographe-caténaire (Study of the dynamic behavior of the pantograph-catenary) (in French). Diploma thesis, Conservatoire National des Arts et Metiers, Paris, France

    Google Scholar 

  11. Gear CW (1971) Simultaneous numerical solution of differential-algebraic equations. IEEE Trans Circuit Th 18(1):89–95

    Article  Google Scholar 

  12. Huang YJ (2004) Discrete fuzzy variable structure control for pantograph position control. Elect Eng 86:171–177

    Article  Google Scholar 

  13. Hulbert G, Ma Z-D, Wang J (2005) Gluing for dynamic simulation of distributed mechanical systems. In: Ambrósio J (ed) Advances on computational multibody systems. Springer, Dordrecht, The Netherlands

    Google Scholar 

  14. Hunt KH, Crossley FR (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech 7:440–445

    Google Scholar 

  15. Jalon J, Bayo E (1994) Kinematic and dynamic simulation of multibody systems: the real-time challenges in mechanical systems simulation. Springer, New York

    Google Scholar 

  16. Jensen C (1997) Nonlinear systems with discrete and discontinuous elements. Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  17. Jerrelind J, Stensson A (2003) Nonlinear dynamic behaviour of coupled suspension systems. Meccanica 38:43–59

    Article  MATH  Google Scholar 

  18. Kubler R, Schiehlen W (2000) Modular simulation in multibody system dynamics. Mult Syst Dyn 4:107–127

    Article  Google Scholar 

  19. Labergri F (2000) Modélisation du comportement dynamique du syst`eme pantographe-caténaire (Model for the dynamic behavior of the system pantograph-catenary) (in French). Ph.D. thesis, Ecole Doctorale de Mechanique de Lyon, Lyon, France

    Google Scholar 

  20. Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. AMSE J Mechl Design 112:369–376

    Article  Google Scholar 

  21. Mei G, Zhang W, Zhao H, Zhang L (2006) A hybrid method to simulate the interaction of pantograph and catenary on overlap span. Vehicle Syst Dyn 44(S1):571–580

    Article  Google Scholar 

  22. Moaveni S (2007) Finite element analysis theory and application with ANSYS. Prentice-Hall, Englewood-Cliffs, NJ

    Google Scholar 

  23. Newmark, NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85(EM 3):67–94

    Google Scholar 

  24. Nikravesh P (1988) Computer-aided analysis of mechanical systems. Prentice-Hall, Englewood-Cliffs, NJ

    Google Scholar 

  25. Rauter F, Pombo J, Ambrósio J, Chalansonnet J, Bobillot A, Pereira M (2006) Contact model for the pantograph-catenary interaction. In: Proceedings of the Third Asian Conference of Multibody Dynamics (on CD), Tokyo, Japan, August 2–4

    Google Scholar 

  26. Reinbold M, Deckart U (1996) FAMOS — Ein programm zur simulation von oberleitungen und stromabnehmer (FAMOS — a program for the simulation of catenaries and pantographs). ZEV+DET Glases Annalen 120(6):239–243

    Google Scholar 

  27. Resta F, Collina A, Fossati F (2001) Actively controlled pantograph: an application. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, July 8–12

    Google Scholar 

  28. Seo J-H, Sugiyama H, Shabana A (2005) Modeling pantograph/catenary interactions for multibody railroad vehicle systems. In: Goicolea J, Orden J-C, Cuadrado J (eds) Proceedings of the ECCOMAS Thematic Conference Multi-body Dynamics 2005, Madrid, Spain, June 21–24

    Google Scholar 

  29. Seo J-H, Kim S-W, Jung I-H, Park T-W, Mok J-Y, Kim Y-G, Chai J-B (2006) Dynamic analysis of a pantograph-catenary system using absolute nodal coordinates. Vehicle Syst Dyn 44(8):615–630

    Article  Google Scholar 

  30. Shampine L, Gordon M (1975) Computer solution of ordinary differential equations: the initial value problem. Freeman, San Francisco, CA

    MATH  Google Scholar 

  31. Veitl A, Arnold M (1999) Coupled simulations of multibody systems and elastic Structures. In: Ambrósio J, Schiehlen W (eds) Proceedings of EUROMECH Colloquium 404 Advances in Computational Multibody Dynamics, Lisbon, Portugal, September 20–23

    Google Scholar 

  32. Vera C, Suarez B, Paulin J, Rodríguez P (2006) Simulation model for the study of overhead rail current collector systems dynamics, focused on the design of a new conductor rail. Vehicle Sys Dyn 44(8):595–614

    Article  Google Scholar 

  33. Zhang W, Mei G, Wu X, Shen Z (2002) Hybrid Simulation of dynamics for the pantograph-catenary system. Vehicle Sys Dyn 38(6):393–414

    Article  Google Scholar 

  34. Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth-Heinemann, Woburn, MA

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ambrósio, J., Pombo, J., Rauter, F., Pereira, M. (2009). A Memory Based Communication in the Co-simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation. In: Bottasso, C.L. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8829-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8829-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8828-5

  • Online ISBN: 978-1-4020-8829-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics