Optoacoustic imaging

  • M. Frenz
  • M. Jaeger
  • A. Gertsch
  • M. Kitz
  • D. Schweizer
Part of the Acoustical Imaging book series (ACIM, volume 29)


A medical ultrasound system was combined with a pulsed laser source to allow optoacoustic imaging. Whereas ultrasound imaging is based on reflection and scattering of an incident acoustic pulse at internal structures, optoacoustics probes optical properties and therefore provides much higher contrast and complementary information. Targeting structures to a depth of a few centimeters, optoacoustics supplies superior contrast and higher spatial resolution compared to conventional ultrasound. The two complementary methods combined in one single device are ideally suited for medical diagnostics.

Key words

Ultrasound Laser-induced ultrasonography Medical diagnostics Doppler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Welch and M. J. C. van Germert, Optical-thermal response of laser-irradiated tissue, Plenum Press, New York and London, 1995.Google Scholar
  2. 2.
    M. Wolf, M. A. Franceschini, L. A. Opaunescu, V. Toronov, A. Michalos, U. Wolf, E. Gratton and S. Fantini, Absolute frequency-domain pulse oxymetry of brain: Methodology and measurements, Advances in Experimental Medicine and Biology 530 (2003), 61–74.Google Scholar
  3. 3.
    M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine, Review of Scientific Instruments 77 (2006), no. 4, 41101–41122.CrossRefGoogle Scholar
  4. 4.
    J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi and A. A. Oraevsky, Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography, Molecular Imaging & Biology 6 (2004), no. 5, 341–349.CrossRefGoogle Scholar
  5. 5.
    K. P. Kostli, M. Frenz, H. P. Weber, G. Paltauf and H. Schmidt-Kloiber, Optoacoustic infrared spectroscopy of soft tissue, Journal of Applied Physics 88 (2000), no. 3, 1632–1637.CrossRefADSGoogle Scholar
  6. 6.
    V. G. Andreev, A. E. Ponomarev, P. M. Henrichs, M. Motamedi, E. Orihuela, E. Eyzaguirre and A. A. Oraevsky, Detection of prostate cancer with opto-acoustic tomography, Proceedings of the SPIE 4960 (2003), 45–57.CrossRefADSGoogle Scholar
  7. 7.
    A. A. Karabutov, E. V. Savateeva, N. B. Podymova and A. A. Oraevsky, Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer, Journal of Applied Physics 87 (2000), no. 4, 2003–2014.CrossRefADSGoogle Scholar
  8. 8.
    M. C. Pilatou, N. J. Voogd, F. F. M. de Mul, W. Steenbergen and L. N. A. van Adrichem, Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro, Review of Scientific Instruments 74 (2003), no. 10, 4495–4499.CrossRefADSGoogle Scholar
  9. 9.
    S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen and T. G. van Leeuwen, The twente photoacoustic mammoscope: System overview and performance, Physics in Medicine and Biology 50 (2005), no. 11, 2543–2557.CrossRefADSGoogle Scholar
  10. 10.
    F. Yuncai, Photoacoustic ultrasonography and its potential application in mammography, Medical Physics 24 (1997), no. 10, 1647.Google Scholar
  11. 11.
    M. Eghtedari, J. A. Copland, N. A. Kotov, A. A. Oraevsky and M. Motamedi, Optoacoustic imaging of nanoparticle labeled breast cancer cells: A molecular based approach for imaging of deep tumors, Lasers in Surgery and Medicine (2004), 52–52.Google Scholar
  12. 12.
    N. L. Swanson and B. D. Billard, Optimization of extinction from surface plasmon resonances of gold nanoparticles, Nanotechnology 14 (2003), no. 3, 353–357.CrossRefADSGoogle Scholar
  13. 13.
    K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber and M. Frenz, Optoacoustic imaging using a three-dimensional reconstruction algorithm, IEEE Journal of Selected Topics in Quantum Electronics 7 (2002), no. 6, 918–923.CrossRefGoogle Scholar
  14. 14.
    K. P. Köstli, M. Frenz, H. Bebie and H. P. Weber, Temporal backward projection of optoacoustic pressure transients using fourier transform methods, Physics in Medicine and Biology 46 (2001), no. 7, 1863–1872.CrossRefADSGoogle Scholar
  15. 15.
    P. C. Beard, Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot polymer film sensor for transducer field characterization and transmission ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 52 (2005), no. 6, 1002–1012.CrossRefGoogle Scholar
  16. 16.
    J. J. Niederhauser, D. Frauchiger, H. P. Weber and M. Frenz, Real-time optoacoustic imaging using a schlieren transducer, Applied Physics Letters 81 (2002), no. 4, 571–573.CrossRefADSGoogle Scholar
  17. 17.
    J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber and M. Frenz, Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo, IEEE Transactions on Medical Imaging 24 (2005), no. 4, 436–440.CrossRefGoogle Scholar
  18. 18.
    G. Paltauf, H. Schmidt-Kloiber, K. P. Kostli and M. Frenz, Optical method for two-dimensional ultrasonic detection, Applied Physics Letters 75 (1999), no. 8, 1048–1050.CrossRefADSGoogle Scholar
  19. 19.
    J. J. Niederhauser, M. Jaeger and M. Frenz, Real-time three-dimensional optoacoustic imaging using an acoustic lens system, Applied Physics Letters 85 (2004), no. 5, 846–848.CrossRefADSGoogle Scholar
  20. 20.
    H. M. Lai and K. Young, Theory of the pulsed optoacoustic technique, Journal of the Acoustical Society of America 72 (1982), no. 6, 2000–2007.MATHCrossRefADSGoogle Scholar
  21. 21.
    G. Paltauf, H. Schmidt-Kloiber and M. Frenz, Photoacoustic waves excited in liquids by fiber-transmitted laser pulses, Journal of Acoustical Society of America 104 (1998), 890–897.CrossRefADSGoogle Scholar
  22. 22.
    M. W. Sigrist and F. K. Kneubuhl, Laser-generated stress waves in liquids, Journal of the Acoustical Society of America 64 (1978), no. 6, 1652–1663.CrossRefADSGoogle Scholar
  23. 23.
    K. P. Kostli and P. C. Beard, Two-dimensional photoacoustic imaging by use of fourier-transform image reconstruction and a detector with an anisotropic response, Applied Optics 42 (2003), no. 10, 1899–1908.CrossRefADSGoogle Scholar
  24. 24.
    M. Xu and L. V. Wang, Time-domain reconstruction for thermoacoustic tomography in a spherical geometry, IEEE Transactions on Medical Imaging 21 (2002), no. 7, 814–822.CrossRefGoogle Scholar
  25. 25.
    M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Physical Review E 71 (2005), no. 1, 16706.CrossRefADSGoogle Scholar
  26. 26.
    M. Xu, X. Yuan and L. V. Wang, Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries, IEEE Transactions on Biomedical Engineering 50 (2003), no. 9, 1086–1099.CrossRefGoogle Scholar
  27. 27.
    Y. Xu, Reconstructions in limited-view thermoacoustic tomography, Medical Physics 31 (2004), no. 4, 724–733.CrossRefADSGoogle Scholar
  28. 28.
    X. Yuan, F. Dazi and L. V. Wang, Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry, IEEE Transactions on Medical Imaging 21 (2002), no. 7, 823–828.CrossRefGoogle Scholar
  29. 29.
    M. A. Eghtedari, J. A. Copland, V. L. Popov, N. A. Kotov, M. Motamedi and A. A. Oraevsky, Bioconjugated gold nanoparticles as a contrast agent for detection of small tumors, Proceedings of the SPIE The International Society for Optical Engineering 4960 (2003), 76–85.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Frenz
    • 1
    • 2
  • M. Jaeger
    • 1
    • 2
  • A. Gertsch
    • 1
    • 2
  • M. Kitz
    • 1
    • 2
  • D. Schweizer
    • 1
    • 2
  1. 1.Institute of Applied PhysicsUniversity of BernSwitzerland
  2. 2.Fukuda Denshi Switzerland AGBaselSwitzerland

Personalised recommendations