Advertisement

Combining Ultrasonic and Magnetic-Resonance Spectral Methods for Imaging Prostate Cancer

  • E. Feleppa
  • S. Dasgupta
  • S. Ramachandran
  • J. Ketterling
  • A. Kalisz
  • C. Porter
  • M. Lacrampe
  • C. Isacson
  • S. Haker
  • C. Tempany
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 29)

Abstract

We aim to improve existing prostate tissue type imaging methods to better distinguish between cancerous and noncancerous prostate tissue. In doing so, we hope to increase the effectiveness of biopsy guidance, therapy targeting, and treatment monitoring. Spectral parameters obtained from radiofrequency (RF) ultrasonic (US) echo signals acquired from biopsy regions, along with the PSA level were used to train a neural network classifier. This method produced an ROC curve area of 0.84 compared to 0.64 obtained from Bmode, image-based classification. In order to further improve our prostate tissue typing methods, the integration of ultrasonic and magnetic resonance (MR) methods, to take advantage of the independent information provided by US and MR is being investigated. We are developing effective means of 3D spatial coregistration of US and MR data along with histological data used for validation.

Key words

Ultrasound spectra Magnetic resonance spectra Prostate cancer imaging Spectral parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cancer Facts and Figures 2006 (American Cancer Society, 2007) 10Google Scholar
  2. 2.
    E. Feleppa, S. Dasgupta, S. Ramachandran, J. Ketterling, C. Porter, M. Lacrampe, D. Dail: Proc. IEEE Ultrason. Symp. (2006)Google Scholar
  3. 3.
    E. Feleppa, C. Porter, J. Ketterling, S. Dasgupta, S. Ramachandran, D. Sparks: Acoust. Imag. 28 (2006) 335Google Scholar
  4. 4.
    E. Feleppa, C. Porter, J. Ketterling, P. Lee, S. Dasgupta, S. Urban, A. Kalisz: Ultrason. Imag. 26 (2004) 163Google Scholar
  5. 5.
    J. Kurhanewicz, D. Vigneron, R. Males: Rad. Clins. N. Am. (2000) 115Google Scholar
  6. 6.
    J. Kurhanewicz, D. Vigneron, H. Hrickak, P. Carroll, P. Narayan, S. Nelson: Radiol. 198 (1996) 795Google Scholar
  7. 7.
    S. Haker, S. Warfield, C. Tempany: Proc. Med. Image Computing and ComputerAssisted Intervention, LNCS 3216 (2004) 853.Google Scholar
  8. 8.
    S. Angenent, S. Haker, A. Tannenbaum, R. Kikinis: IEEE Trans on Med Imag. 18 (1999) 700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E. Feleppa
    • 1
    • 2
    • 3
  • S. Dasgupta
    • 1
    • 2
    • 3
  • S. Ramachandran
    • 1
    • 2
    • 3
  • J. Ketterling
    • 1
    • 2
    • 3
  • A. Kalisz
    • 1
    • 2
    • 3
  • C. Porter
    • 1
    • 2
    • 3
  • M. Lacrampe
    • 1
    • 2
    • 3
  • C. Isacson
    • 1
    • 2
    • 3
  • S. Haker
    • 1
    • 2
    • 3
  • C. Tempany
    • 1
    • 2
    • 3
  1. 1.Riverside Research InstituteNew YorkUSA
  2. 2.Virginia Mason Medical CenterSeattleUSA
  3. 3.Brigham and Women’s HospitalBostonUSA

Personalised recommendations