Skip to main content

Localized Radial Basis Functions with Partition of Unity Properties

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 11))

In this paper we introduce a localization of radial basis function (RBF) under the general framework of partition of unity. A reproducing kernel that repro¬duces polynomials is used as the localizing function of RBF. It is shown that the proposed approach yields a similar convergence to that of the non localized RBF, while a better conditioned discrete system than that of the radial basis collocation method is achieved. Analyses of error and stability of the proposed method for solving boundary value problems are presented. Numerical examples are given to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuska and J. M. Melenk, The partition of unity method, Int. J. Numer. Meth. Eng., Vol. 40, pp. 727–758, 1997

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, Int. J. Numer. Meth. Eng., Vol. 37, pp. 229–256, 1994

    Article  MATH  MathSciNet  Google Scholar 

  3. M. D. Buhmann, radial basis functions, Cambridge Monographs on Applied and Computational Methematics, Cambridge University Press, Cambridge, 18–19, 2003

    Google Scholar 

  4. M. D. Buhmann and C. A. Micchelli, Multiquadric interpolation improved advanced in the theory and applications of radial basis functions, Comput. Math. Appl., Vol. 43, pp. 21–25, 1992

    Article  MathSciNet  Google Scholar 

  5. R. E. Carlson and T. A. Foley, Interpolation of track data with radial basis methods, Comp. Math. Appl., Vol. 24, pp. 27–34, 1992

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Cecil, J. Qian, and S. Osher, Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, J. Comput. Physics., Vol. 196, pp. 327–347, 2004

    Article  MATH  MathSciNet  Google Scholar 

  7. J. S. Chen, C. Pan, C. T. Wu, and W. K. Liu, Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Method. Appl. Mech. Eng., Vol. 139, pp. 195–227, 1996

    Article  MATH  MathSciNet  Google Scholar 

  8. J. S. Chen, W. Hu, and H. Y. Hu, Reproducing kernel enhanced local radial basis collocation method, International Journal for Numerical Methods in Engineering, Vol. 75(5), pp. 600–627, 2008

    Article  MathSciNet  Google Scholar 

  9. C. K. Chui, J. Stoeckler, and J. D. Ward, Analytic wavelets generated by radial functions, Adv. Comput. Math., Vol. 5, pp. 95–123, 1996

    Article  MATH  MathSciNet  Google Scholar 

  10. C. A. M. Duarte and J. T. Oden, Hp clouds — an hp meshless method, Numer. Meth. Part. D. E., Vol. 12, pp. 673–705, 1996

    Article  MATH  MathSciNet  Google Scholar 

  11. G. F. Fasshauer, Solving differential equations with radial basis functions: multilevel methods and smoothing, Adv. Comput. Math., Vol. 11, pp. 139–159, 1999

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Franke and R. Schaback, Solving partial differential equations by collocation using radial functions, Appl. Math. Comput., Vol. 93, pp. 73–82, 1998

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Girosi, On some extensions of radial basis functions and their applications in artificial intelligence, Comp. Math. Appl., Vol. 24, pp. 61–80, 1992

    Article  MATH  MathSciNet  Google Scholar 

  14. R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., Vol. 176, pp. 1905–1915, 1971

    Article  Google Scholar 

  15. R. L. Hardy, Theory and applications of the multiquadric-biharmonic method: 20 years of discovery, Comp. Math. Appl., Vol. 19(8/9), pp. 163–208, 1990

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Han and X. Meng, Error analysis of the reproducing kernel particle method, Comput. Method Appl. Mech. Eng., Vol. 190, pp. 6157–6181, 2001

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Y. Hu and Z. C. Li, Collocation methods for Poisson's equation, Comput. Method Appl. Mech. Eng., Vol. 195, pp. 4139–4160, 2006

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Y. Hu, Z. C. Li, and A. H. D. Cheng, Radial basis collocation method for elliptic equations. Comput. Math. Appli., Vol. 50, pp. 289–320, 2005

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Y. Hu, J. S. Chen, and W. Hu, Weighted radial basis collocation method for boundary value problems, Int. J. Numer. Meth. Eng., Vol. 69, pp. 2736–2757, 2007

    Article  MathSciNet  Google Scholar 

  20. E. J. Kansa, Multiqudrics — a scattered data approximation scheme with applications to computational fluid-dynamics — I Surface approximations and partial derivatives. Comput. Math. Appli., Vol. 19, pp. 127–145, 1992

    Article  MathSciNet  Google Scholar 

  21. E. J. Kansa, Multiqudrics — a scattered data approximation scheme with applications to computational fluid-dynamics — II Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appli., Vol. 19, pp. 147–161, 1992

    Article  MathSciNet  Google Scholar 

  22. E. J. Kansa and Y. C. Hon, Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations, Comput. Math. Appli., Vol. 39, pp. 123–137, 2000

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comput., Vol. 37, pp. 141–158, 1981

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Li, Mixed methods for forth-order elliptic and parabolic problems using radial basis functions, Adv. Comput. Math., Vol. 23, pp. 21–30, 2005

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Ling, R. Opfer, and R. Schaback, Results on meshless collocation techniques, Eng., Anal. Boundary Elements, Vol. 30, pp. 247–253, 2006

    Article  Google Scholar 

  26. W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Meth. Fluids., Vol. 20, pp. 1081–1106, 1995

    Article  MATH  MathSciNet  Google Scholar 

  27. W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolatory, Comput. Math. Appli., Vol. 24, No.12, pp. 121–138, 1992

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Pollandt, Solving nonlinear equations of mechanics with the boundary element method and radial basis functions, Int. J. Numer. Meth. Eng., Vol. 40, pp. 61–73, 1997

    Article  MathSciNet  Google Scholar 

  29. M. J. D. Powell, Univariate multiquadric interpolation: some recent results, Curves and Surfaces, Academic, New York, pp. 371–382, 1991

    Google Scholar 

  30. T. Sonar, Optimal recovery using thin-plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws, IMA J. Numer. Anal., Vol. 16, pp. 549–581, 1996

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree, Adv. Comput. Math., Vol. 4, pp. 389–396, 1995

    Article  MATH  MathSciNet  Google Scholar 

  32. S. M. Wong, Y. C. Hon, T. S. Li, S. L. Chung and E. J. Kansa, Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme, Comput. Math. Appli., Vol. 37, pp. 23–43, 1999

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiun-Shyan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Chen, JS., Hu, W., Hu, HY. (2009). Localized Radial Basis Functions with Partition of Unity Properties. In: Ferreira, A.J.M., Kansa, E.J., Fasshauer, G.E., Leitão, V.M.A. (eds) Progress on Meshless Methods. Computational Methods in Applied Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8821-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8821-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8820-9

  • Online ISBN: 978-1-4020-8821-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics