Skip to main content

Visualization of Meshless Simulations Using Fourier Volume Rendering

  • Chapter
Progress on Meshless Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 11))

Fourier volume rendering is a volume visualization technique first applied to regular grid data. We adapt this technique to deal directly with meshless data, with the intended application of visualizing simulations which use meshless meth¬ods to solve the underlying equations of the simulation. Because we consider a general class of meshless data, the technique is applicable to the data produced by many meshless methods such as Kansa's method, symmetric collocation, and smoothed particle hydrodynamics. We discuss the technique's implementation on graphics hardware, and demonstrate its usefulness in visualizing data produced by both astrophysical and fluid dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Antunes and J. Wallin. Convergence on N-body plus SPH. In Bulletin of the American Astronomical Society, pages 1433, December 2001

    Google Scholar 

  2. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineer¬ing, 139:3–47, 1996

    Article  MATH  Google Scholar 

  3. M. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge University Press, New York 2003

    MATH  Google Scholar 

  4. Christopher S. Co and Kenneth I. Joy. Isosurface generation for large-scale scattered data visu¬alization. In G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger, editors, Proceedings of VMV 2005, pages 233–240, 2005

    Google Scholar 

  5. A. Corrigan and H. Q. Dinh. Computing and rendering implicit surfaces composed of radial basis functions on the GPU. In Poster proceedings of the International Workshop on Volume Graphics, June 2005

    Google Scholar 

  6. S. Dunne, S. Napel, and B. Rutt. Fast reprojection of volume data. In Proceedings of the First Conference on Visualization in Biochemical Computing, pages 11–18, 1990

    Google Scholar 

  7. A. Entezari, R. Scoggins, T. Möller, and R. Machiraju. Shading for Fourier volume rendering. In VVS '02: Proceedings of the 2002 IEEE symposium On Volume Visualization and Graphics, pages 131–138, 2002

    Google Scholar 

  8. G. Fasshauer. Solving partial differential equations by collocation with radial basis functions. In Surface Fitting and Multiresolution Methods, pages 131–138. Vanderbilt University Press, Nashville, TN, 1997

    Google Scholar 

  9. C. Franke and R. Schaback. Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 93(1):73–82, 1998

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Giesl and H. Wendland. Meshless collocation: Error estimates with application to dynamical systems. Preprint Göttingen/München 2006, to appear in SIAM Journal on Numerical Analysis, 2006

    Google Scholar 

  11. R. Gonzalez and R. Woods. Digital Image Processing. Prentice-Hall, second edition, 2002

    Google Scholar 

  12. M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two methods for wavelet-based volume rendering. Computers and Graphics, 21(2):237–252, 1997

    Article  Google Scholar 

  13. J. Hart. Ray tracing implicit surfaces. In Siggraph 93 Course Notes: Design, Visualization and Animation of Implicit Surfaces, pages 1–16, 1993

    Google Scholar 

  14. J. L. Higdon and J. F. Wallin. Wheels of fire. III. Massive star formation in the “double-ringed” ring galaxy AM0644-741. Astrophysical Journal, 474:686–700, 1997

    Article  Google Scholar 

  15. M. Hopf and T. Ertl. Hierarchical splatting of scattered data. In Proceedings of IEEE Visualization, pages 433–440, 2003

    Google Scholar 

  16. Y. Jang, M. Weiler, M. Hopf, J. Huang, D. Ebert, K. Gaither, and T. Ertl. Interactively visual¬izing procedurally encoded scalar fields. In O. Deussen, C. Hansen, D. Keim, and D. Saupe, editors, Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym'04, 2004

    Google Scholar 

  17. E. J. Kansa. Multiquadrics — A scattered data approximation scheme with applications to computational fluid dynamics. Computers & Mathematics with Applications, 19:147–161, 1990

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Levoy. Volume rendering using the Fourier projection-slice theorem. In Proceedings of the Conference on Graphics Interface'92, pages 61–69, Morgan Kaufmann, San Francisco, CA, USA, 1992

    Google Scholar 

  19. T. Malzbender. Fourier volume rendering. ACM Transactions Graphics, 12(3):233–250, 1993

    Article  MATH  Google Scholar 

  20. J. Meredith and K.-L. Ma. Multiresolution view-dependent splat based volume rendering of large irregular data. In Proceedings of IEEE Symposium on Parallel and Large Data Visualization and Graphics, 2001

    Google Scholar 

  21. J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8):1703–1759, 2005

    Article  MathSciNet  Google Scholar 

  22. N. Neophytou, K. Mueller, K. T. McDonnell, W. Hong, X. Guan, H. Qin, and A. Kaufman. GPU-accelerated volume splatting with elliptical RBFs. In Proceedings of the Joint Euro¬graphics - IEEE TCVG Symposium on Visualization 2006, May 2006

    Google Scholar 

  23. D. J. Price. SPLASH: An interactive visualisation tool for SPH data. Accepted to the Publications of the Astronomical Society of Australia, 2007

    Google Scholar 

  24. R. J. Rand and J. F. Wallin. Pattern speeds of BIMA SONG galaxies with molecule-dominated interstellar mediums using the Tremaine-Weinberg method. Astrophysical Journal, 614:142– 157, 2004

    Article  Google Scholar 

  25. R. Rau and W. Strasser. Direct volume rendering of irregular samples. In Visualization in Scientific Computing 95, pages 72–80, 1995

    Google Scholar 

  26. Z. Ren, M. Vesenjak, and A. Öchsner. Behaviour of cellular structures under impact loading: A computational study. Materials Science Forum, 566:53–60, 2008

    Article  Google Scholar 

  27. R. Schaback. Convergence of unsymmetric kernel-based meshless collocation methods. SIAM Journal on Numerical Analysis, 45(1):333–351, 2007

    MATH  MathSciNet  Google Scholar 

  28. P. Stark. Fourier volume rendering of irregular data sets. Master's thesis, Simon Fraser University, 2002

    Google Scholar 

  29. T. Totsuka and M. Levoy. Frequency domain volume rendering. In SIGGRAPH 93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pages 271–278, 1993

    Google Scholar 

  30. M. Vesenjak, A. Öchsner, M. Hribersêk, and Z. Ren. Behaviour of cellular structures with fluid fillers under impact loading. International Journal of Multiphysics, 1:101–122, 2007

    Article  Google Scholar 

  31. M. Vesenjak, Z. Ren, H. Mulerschon, and S. Matthaei. Computational modelling of fuel motion and its interaction with the reservoir structure. Journal of Mechanical Engineering, 52, 2006

    Google Scholar 

  32. M. Weiler, R. Botchen, S. Stegmaier, T. Ertl, J. Huang, Y. Jang, D. S. Ebert, and K. P. Gaither. Hardware-assisted feature analysis and visualization of procedurally encoded multifield volumetric data. IEEE Computer Graphics and Applications, 25(5):72–81, 2005

    Article  Google Scholar 

  33. H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge 2005

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Corrigan, A., Wallin, J., Vesenjak, M. (2009). Visualization of Meshless Simulations Using Fourier Volume Rendering. In: Ferreira, A.J.M., Kansa, E.J., Fasshauer, G.E., Leitão, V.M.A. (eds) Progress on Meshless Methods. Computational Methods in Applied Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8821-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8821-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8820-9

  • Online ISBN: 978-1-4020-8821-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics