Skip to main content

Application of Smoothed Particle Hydrodynamics Method in Engineering Problems

  • Chapter
Progress on Meshless Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 11))

  • 1463 Accesses

Computational simulations are becoming increasingly important engineering tool in recent years. One of the new computational techniques are the meshless methods, covering several application fields in engineering. In this paper the meshless Smoothed Particle Hydrodynamics method (SPH) is introduced and its implementation in the explicit code LS-DYNA is discussed. Then the application of the SPH method is presented with two practical examples. The first example deals with the modelling of sloshing problem in a reservoir, where the fluid has been analysed using different numerical techniques. The computational results were compared to and validated with the experimental measurements. The second example describes the fluid flow through the open network of cellular structure with the purpose to study its influence on capability of the impact energy absorption. In both examples the SPH method proved to be an effective and reliable tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    MATH  Google Scholar 

  2. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  3. Lacome JL (2001) Smoothed particle hydrodynamics. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  4. Schwer L (2004) Preliminary Assessment of Non-Lagrangian Methods for Penetration Simulation. Proceedings 8th International LS-DYNA Users Conference

    Google Scholar 

  5. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Method Appl M 190:6641–6662

    Article  MATH  Google Scholar 

  6. Idelsohn SR, Onate E, Del Pin F (2003) A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput Struct 81:655–671

    Article  Google Scholar 

  7. Buyuk M, Kan CDS, Bedewi N, et al. (2004) Moving Beyond the Finite Elements, A Comparison Between the Finite Element Methods and Meshless Methods for a Ballistic Impact Simulation. Proceedings 8th International LS-DYNA Users Conference

    Google Scholar 

  8. Vignjevic R (2002) Review of development of the smooth particle hydrodynamics (SPH) method. Cranfield University, Cranfield

    Google Scholar 

  9. Hitoshi M, Quantum mechanics I: Dirac delta function. http://hitoshi.berkley.edu/221A. Accessed 17. 1. 2006

  10. Kurt B (2001) The Dirac delta function. Rose-Hulman Institute of Technology, Terre Haute

    Google Scholar 

  11. Trina RM (1995) Physically-based fluid modelling using smoothed particle hydrodynamics. University of Illinois, Chicago, IL

    Google Scholar 

  12. LS-DYNA. http://www.lstc.com/. Accessed 4. 4. 2007

  13. Hallquist JO (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  14. Meywerk M, Decker F, Cordes J (1999) Fuel Sloshing in Crash Simulations. Proceedings EuroPAM 99

    Google Scholar 

  15. Å kerget L (1994) Fluid mechanics (in Slovene). Technical Faculty Maribor and Faculty of Mechanical Engineering Ljubljana, Ljubljana

    Google Scholar 

  16. Christon MA, Cook GO (2001) LS-DYNA's incompressible flow solver, user's manual. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  17. Olovsson L (2004) LS-DYNA training class in ALE and fluid-structure interaction. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  18. Olovsson L, Soulli M, Do I (2003) LS-DYNA — ALE capabilities, fluid-structure interaction modeling. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  19. Müllerschön H (2004) Contact modeling in LS-DYNA. DYNAmore, Stuttgart

    Google Scholar 

  20. Hallquist JO (2003) LS-DYNA keyword user's manual. Livermore Software Technology Corporation, Livermore, CA

    Google Scholar 

  21. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  22. Ashby MF, Evans A, Fleck NA, et al. (2000) Metal foams: a design guide. Elsevier Science, Burlington, MA

    Google Scholar 

  23. Lankford J, Dannemann KA (1998) Strain Rate Effects in Porous Materials. Proceedings Materials Research Society Symposium, pp. 103–108

    Google Scholar 

  24. Vesenjak M (2006) Computational modelling of cellular structure under impact conditions, Ph.D. thesis, Faculty of Mechanical Engineering, Maribor

    Google Scholar 

  25. Ren Z, Vesenjak M, Öchsner A (2008) Behaviour of cellular structures under impact loading: a computational study. Mater Sci Forum 566:53–60

    Article  Google Scholar 

  26. Altenhof W, Ames W (2002) Strain rate effects for aluminum and magnesium alloys in finite element simulations of steering wheel armature impact tests. Fatigue Fract Eng M 25:1149– 1156

    Article  Google Scholar 

  27. Bodner SR, Symonds PS (1962) Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading. J Appl Mech 29:719–728

    Google Scholar 

  28. Vesenjak M, Öchsner A, Hriberšek M, et al. (2007) Behaviour of cellular structures with fluid fillers under impact loading. Int J Multiphys 1:101–122

    Article  Google Scholar 

  29. Ochnser A (2003) Experimentelle und numerische Untersuchung des elasto-plastischen Verhaltens zellularer Modellwerkstoffe, Ph.D. thesis, University Erlangen, Nuremberg

    Google Scholar 

  30. CFX Users Manual 10.0. www.ansys.com. Accessed 4. 4. 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Vesenjak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Vesenjak, M., Ren, Z. (2009). Application of Smoothed Particle Hydrodynamics Method in Engineering Problems. In: Ferreira, A.J.M., Kansa, E.J., Fasshauer, G.E., Leitão, V.M.A. (eds) Progress on Meshless Methods. Computational Methods in Applied Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8821-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8821-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8820-9

  • Online ISBN: 978-1-4020-8821-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics