The Radial Natural Neighbours Interpolators Extended to ElastoplastiCity

  • LÙcia Maria Jesus Simas de Dinis
  • Renato Manuel Natal Jorge
  • Jorge Belinha
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 11)

Considering a small strain formulation a Radial Natural Neighbour Interpolator method is extended to the elastoplastic analysis. Resorting to the Voronoï tessellation the nodal connectivity is obtained. The Delaunay triangulation supplies the integration background mesh. The improved interpolation functions based on the Radial Point Interpolators are provided with the delta Kronecker property, easing the imposition of the essential and natural boundary conditions. The Newton-Raphson method is used for the solution of the nonlinear system of equations and an Hill yield surface is considered. Benchmark examples prove the high accuracy and convergence rate of the proposed method.


Radial point interpolation method Radial basis function Natural neighbours Meshfree method PlastiCity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1):3–47, 1999CrossRefGoogle Scholar
  2. 2.
    Y.T. Gu. Meshfree methods and their comparisons. International Journal of Computational Methods, 2(4):477–515, 2005MATHCrossRefGoogle Scholar
  3. 3.
    K.J. Bathe. Finite Element Procedures. Prentice-Hall: Englewood Cliffs, NJ, 1996Google Scholar
  4. 4.
    O.C. Zienkiewicz. The Finite Element Method. 4th ed. McGraw-Hill: London, 1989Google Scholar
  5. 5.
    P. Lancaster and K. Salkauskas. Surfaces generation by moving least squares methods. Mathematics of Computation, 37:141–158, 1981MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10:307–318, 1992MATHCrossRefGoogle Scholar
  7. 7.
    T. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin method. International Journal for Numerical Methods in Engineering, 37:229–256, 1994MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Dolbow and T. Belytschko. An introduction to programming the meshless element free galerkin method. Archives in Computational Mechanics, 5(3):207–241, 1998CrossRefMathSciNetGoogle Scholar
  9. 9.
    Y. Lu, T. Belytschko, and L. Gu. A new implementation of the element free galerkin method. Computer Methods in Applied Mechanics and Engineering, 113:397–414, 1994MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J.J. Monaghan. Smoothed particle hydrodynamics: Theory and applications to non-spherical stars. Monthly Notices of the Astronomical Society, 181:375–389, 1977MATHGoogle Scholar
  11. 11.
    W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(6):1081–1106, 1995MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S.N. Atluri and T. Zhu. A new meshless local petrov-galerkin (mlpg) approach in computational mechanics. Computational Mechanics, 22(2):117–127, 1998MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    E. Oñate, S. Idelsohn, O.C. Zienkiewicz, and R.L. Taylor. A finite point method in computational mechanics — Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 39:3839–3866, 1996MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K.J. Bathe and S. De. Towards an efficient meshless computational technique: The method of finite spheres. Engineering Computations, 18:170–192, 2001MATHCrossRefGoogle Scholar
  15. 15.
    G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50:937–951, 2001MATHCrossRefGoogle Scholar
  16. 16.
    J.G. Wang, G.R. Liu, and Y.G. Wu. A point interpolation method for simulating dissipation process of consolidation. Computer Methods in Applied Mechanics and Engineering, 190:5907–5922, 2001MATHCrossRefGoogle Scholar
  17. 17.
    G.R. Liu. A point assembly method for stress analysis for two-dimensional solids. International Journal of Solid and Structures, 39:261–276, 2002MATHCrossRefGoogle Scholar
  18. 18.
    J.G. Wang and G.R. Liu. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54:1623–1648, 2002MATHCrossRefGoogle Scholar
  19. 19.
    J.G. Wang and G.R. Liu. On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Computer Methods in Applied Mechanics and Engineering, 191:2611– 2630, 2002MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Traversoni. Natural neighbour finite elements. International Conference on Hydraulic Engineering Software, Hydrosoft Proceedings, Computational Mechanics Publications, 2:291– 297, 1994Google Scholar
  21. 21.
    N. Sukumar, B. Moran, A.Yu Semenov, and V.V. Belikov. Natural neighbour galerkin methods. International Journal for Numerical Methods in Engineering, 50(1):1–27, 2001MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Braun and M. Sambridge. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 376:655–660, 1995CrossRefGoogle Scholar
  23. 23.
    N. Sukumar, B. Moran, and T. Belytschko. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 43(5):839–887, 1998MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    E. Cueto, M. Doblaré, and L. Gracia. Imposing essential boundary conditions in the natural element method by means of density-scaled -shapes. International Journal for Numerical Methods in Engineering, 49(4):519–546, 2000MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré. Overview and recent advances in the natural neighbour galerkin method. Archives of Computational Methods in Engineering, 10(4):307–387, 2003MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    R. Sergio, S. Idelsohn, E. Oñate, N. Calvo, and F. Del Pin. The meshless finite element method. International Journal for Numerical Methods in Engineering, 58(6):893–912, 2003MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    L.M.J.S. Dinis, R.M.N. Jorge, and J. Belinha. Analysis of 3d solids using the natural neighbour radial point interpolation method. Computer Methods in Applied Mechanics and Engineering, 196:2009–2028, 2007CrossRefGoogle Scholar
  28. 28.
    G.M. Voronoï. Nouvelles applications des paramètres continus à la théorie des formes quadra-tiques. Deuxième Mémoire: Recherches sur les parallélloèdres primitifs, Journal für die reine und angewandte Mathematik, 134:198–287, 1908MATHGoogle Scholar
  29. 29.
    B. Delaunay. Sur la sphére vide. a la memoire de georges voronoï. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793–800, 1934Google Scholar
  30. 30.
    D. Owen and E. Hinton. Finite Element in PlastiCity. Pineridge Press: Swansea, 1980Google Scholar
  31. 31.
    M.A. Crisfield. Non-Linear Finite Element Analysis of Solids and Structures. Wiley: Baffins Lane, Chichester, 1991Google Scholar
  32. 32.
    R. Sibson. A vector identity for the dirichlet tesselation. Mathematical Proceedings of the Cambridge Philosophical Society, 87:151–155, 1980MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of interpolation methods for computational mechanics. International Journal for Numerical Methods in Engineering, 59:1373–1379, 2004MATHCrossRefGoogle Scholar
  34. 34.
    R. Von Mises. Nachrichten der Kgl. Gesellschaft der Wissenschaften Göttingen. Klasse, pp. 582–592, 1913Google Scholar
  35. 35.
    M. Brünig. Nonlinear analysis and elasto-plastic behavior of anisotropic structures. Finite Elements in Analysis and Design, 20:155–177, 1995MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Belinha and L.M.J.S. Dinis. Elasto-plastic analysis of anisotropic problems considering the element free galerkin method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería., 22(2):87–117, 2006MathSciNetGoogle Scholar
  37. 37.
    J. Belinha. Elasto-Plastic Analysis Considering the Element Free Galerkin Method. M.Sc. thesis, Faculdade de Engenharia da Universidade do Porto, 2004Google Scholar
  38. 38.
    R.J. Alves de Sousa, R.N. Natal Jorge, R.A. Fontes Valente, and J.M.A. César de Sá. A new volumetric and shear locking-free 3d enhanced strain element. Engineering Computations, 20(7):896–925, 2003MATHCrossRefGoogle Scholar
  39. 39.
    J.A.T. Barbosa. Análise Não Linear Por Elementos Finitos de Placas e Cascas Reforçadas. Tese de Doutoramento, Faculdade de Engenharia da Universidade do Porto, 1992Google Scholar
  40. 40.
    J.A. Figueiras. Ultimate Load Analysis of Anisotropic and Reinforced Concrete Plates and Shells. University of Wales, Ph.D. thesis, C/Ph/72/83, Swansea, 1983Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • LÙcia Maria Jesus Simas de Dinis
    • 1
  • Renato Manuel Natal Jorge
    • 2
  • Jorge Belinha
    • 3
  1. 1.Associate ProfessorFaculty of Engineering of the University of Porto — FEUP Rua Dr. Roberto FriasPortoPortugal
  2. 2.Departamento de Engenharia Mecânica e Gestão IndustrialFaculdade de Engenharia da Univer-sidade do Porto, Rua Dr. Roberto FriasPortoPortugal
  3. 3.Researcher, Institute of Mechanical Engineering — IDMEC Rua Dr. Roberto FriasPortoPortugal

Personalised recommendations