Skip to main content

The Radial Natural Neighbours Interpolators Extended to ElastoplastiCity

  • Chapter
Book cover Progress on Meshless Methods

Considering a small strain formulation a Radial Natural Neighbour Interpolator method is extended to the elastoplastic analysis. Resorting to the Voronoï tessellation the nodal connectivity is obtained. The Delaunay triangulation supplies the integration background mesh. The improved interpolation functions based on the Radial Point Interpolators are provided with the delta Kronecker property, easing the imposition of the essential and natural boundary conditions. The Newton-Raphson method is used for the solution of the nonlinear system of equations and an Hill yield surface is considered. Benchmark examples prove the high accuracy and convergence rate of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1):3–47, 1999

    Article  Google Scholar 

  2. Y.T. Gu. Meshfree methods and their comparisons. International Journal of Computational Methods, 2(4):477–515, 2005

    Article  MATH  Google Scholar 

  3. K.J. Bathe. Finite Element Procedures. Prentice-Hall: Englewood Cliffs, NJ, 1996

    Google Scholar 

  4. O.C. Zienkiewicz. The Finite Element Method. 4th ed. McGraw-Hill: London, 1989

    Google Scholar 

  5. P. Lancaster and K. Salkauskas. Surfaces generation by moving least squares methods. Mathematics of Computation, 37:141–158, 1981

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics, 10:307–318, 1992

    Article  MATH  Google Scholar 

  7. T. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin method. International Journal for Numerical Methods in Engineering, 37:229–256, 1994

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Dolbow and T. Belytschko. An introduction to programming the meshless element free galerkin method. Archives in Computational Mechanics, 5(3):207–241, 1998

    Article  MathSciNet  Google Scholar 

  9. Y. Lu, T. Belytschko, and L. Gu. A new implementation of the element free galerkin method. Computer Methods in Applied Mechanics and Engineering, 113:397–414, 1994

    Article  MATH  MathSciNet  Google Scholar 

  10. J.J. Monaghan. Smoothed particle hydrodynamics: Theory and applications to non-spherical stars. Monthly Notices of the Astronomical Society, 181:375–389, 1977

    MATH  Google Scholar 

  11. W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(6):1081–1106, 1995

    Article  MATH  MathSciNet  Google Scholar 

  12. S.N. Atluri and T. Zhu. A new meshless local petrov-galerkin (mlpg) approach in computational mechanics. Computational Mechanics, 22(2):117–127, 1998

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Oñate, S. Idelsohn, O.C. Zienkiewicz, and R.L. Taylor. A finite point method in computational mechanics — Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 39:3839–3866, 1996

    Article  MATH  MathSciNet  Google Scholar 

  14. K.J. Bathe and S. De. Towards an efficient meshless computational technique: The method of finite spheres. Engineering Computations, 18:170–192, 2001

    Article  MATH  Google Scholar 

  15. G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50:937–951, 2001

    Article  MATH  Google Scholar 

  16. J.G. Wang, G.R. Liu, and Y.G. Wu. A point interpolation method for simulating dissipation process of consolidation. Computer Methods in Applied Mechanics and Engineering, 190:5907–5922, 2001

    Article  MATH  Google Scholar 

  17. G.R. Liu. A point assembly method for stress analysis for two-dimensional solids. International Journal of Solid and Structures, 39:261–276, 2002

    Article  MATH  Google Scholar 

  18. J.G. Wang and G.R. Liu. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54:1623–1648, 2002

    Article  MATH  Google Scholar 

  19. J.G. Wang and G.R. Liu. On the optimal shape parameters of radial basis functions used for 2-d meshless methods. Computer Methods in Applied Mechanics and Engineering, 191:2611– 2630, 2002

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Traversoni. Natural neighbour finite elements. International Conference on Hydraulic Engineering Software, Hydrosoft Proceedings, Computational Mechanics Publications, 2:291– 297, 1994

    Google Scholar 

  21. N. Sukumar, B. Moran, A.Yu Semenov, and V.V. Belikov. Natural neighbour galerkin methods. International Journal for Numerical Methods in Engineering, 50(1):1–27, 2001

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Braun and M. Sambridge. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 376:655–660, 1995

    Article  Google Scholar 

  23. N. Sukumar, B. Moran, and T. Belytschko. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 43(5):839–887, 1998

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Cueto, M. Doblaré, and L. Gracia. Imposing essential boundary conditions in the natural element method by means of density-scaled -shapes. International Journal for Numerical Methods in Engineering, 49(4):519–546, 2000

    Article  MATH  MathSciNet  Google Scholar 

  25. E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré. Overview and recent advances in the natural neighbour galerkin method. Archives of Computational Methods in Engineering, 10(4):307–387, 2003

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Sergio, S. Idelsohn, E. Oñate, N. Calvo, and F. Del Pin. The meshless finite element method. International Journal for Numerical Methods in Engineering, 58(6):893–912, 2003

    Article  MATH  MathSciNet  Google Scholar 

  27. L.M.J.S. Dinis, R.M.N. Jorge, and J. Belinha. Analysis of 3d solids using the natural neighbour radial point interpolation method. Computer Methods in Applied Mechanics and Engineering, 196:2009–2028, 2007

    Article  Google Scholar 

  28. G.M. Voronoï. Nouvelles applications des paramètres continus à la théorie des formes quadra-tiques. Deuxième Mémoire: Recherches sur les parallélloèdres primitifs, Journal für die reine und angewandte Mathematik, 134:198–287, 1908

    MATH  Google Scholar 

  29. B. Delaunay. Sur la sphére vide. a la memoire de georges voronoï. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793–800, 1934

    Google Scholar 

  30. D. Owen and E. Hinton. Finite Element in PlastiCity. Pineridge Press: Swansea, 1980

    Google Scholar 

  31. M.A. Crisfield. Non-Linear Finite Element Analysis of Solids and Structures. Wiley: Baffins Lane, Chichester, 1991

    Google Scholar 

  32. R. Sibson. A vector identity for the dirichlet tesselation. Mathematical Proceedings of the Cambridge Philosophical Society, 87:151–155, 1980

    Article  MATH  MathSciNet  Google Scholar 

  33. G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of interpolation methods for computational mechanics. International Journal for Numerical Methods in Engineering, 59:1373–1379, 2004

    Article  MATH  Google Scholar 

  34. R. Von Mises. Nachrichten der Kgl. Gesellschaft der Wissenschaften Göttingen. Klasse, pp. 582–592, 1913

    Google Scholar 

  35. M. Brünig. Nonlinear analysis and elasto-plastic behavior of anisotropic structures. Finite Elements in Analysis and Design, 20:155–177, 1995

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Belinha and L.M.J.S. Dinis. Elasto-plastic analysis of anisotropic problems considering the element free galerkin method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería., 22(2):87–117, 2006

    MathSciNet  Google Scholar 

  37. J. Belinha. Elasto-Plastic Analysis Considering the Element Free Galerkin Method. M.Sc. thesis, Faculdade de Engenharia da Universidade do Porto, 2004

    Google Scholar 

  38. R.J. Alves de Sousa, R.N. Natal Jorge, R.A. Fontes Valente, and J.M.A. César de Sá. A new volumetric and shear locking-free 3d enhanced strain element. Engineering Computations, 20(7):896–925, 2003

    Article  MATH  Google Scholar 

  39. J.A.T. Barbosa. Análise Não Linear Por Elementos Finitos de Placas e Cascas Reforçadas. Tese de Doutoramento, Faculdade de Engenharia da Universidade do Porto, 1992

    Google Scholar 

  40. J.A. Figueiras. Ultimate Load Analysis of Anisotropic and Reinforced Concrete Plates and Shells. University of Wales, Ph.D. thesis, C/Ph/72/83, Swansea, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LÙcia Maria Jesus Simas de Dinis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

de Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J. (2009). The Radial Natural Neighbours Interpolators Extended to ElastoplastiCity. In: Ferreira, A.J.M., Kansa, E.J., Fasshauer, G.E., Leitão, V.M.A. (eds) Progress on Meshless Methods. Computational Methods in Applied Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8821-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8821-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8820-9

  • Online ISBN: 978-1-4020-8821-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics