Vapour Equilibrium and Osmotic Technique for Suction Control


The vapour equilibrium method and osmotic technique have gained widespread acceptance as reliable methods for controlling relative humidity and thereby suction in soil specimens. The ability to impose suction on soil specimens allows for drying and wetting stress paths to be imposed to evaluate resulting changes in strength, deformation and flow characteristics. The two methods presented and discussed in this paper have been adapted for use with a number of traditional laboratory tests including the oedometer, direct shear and triaxial tests. This report provides a summary of some recent developments and knowledge regarding the use of these techniques highlighting the limitations and drawbacks of the methods.


Laboratory tests Unsaturated soil Suction Osmotic method Vapour equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agus SS, Schanz T (2005) An investigation into hydro-mechanical behavior of an expansive soil using axis-translation and vapor equilibrium techniques. International symposium advanced experimental unsaturated soil mechanics, TrentoGoogle Scholar
  2. Belanteur N, Tacherifet S, Pakzad M (1997) Étude des comportements mécanique, thermo-mécanique et hydromécanique des argiles gonflantes et non gonflantes fortement compactées. Rev Fr Geotech 78:31–50Google Scholar
  3. Blatz JA, Graham J (2000) A system for controlled suction in triaxial tests. Géotechnique 50(4):465–478Google Scholar
  4. Blatz JA, Graham J (2003) Elastic plastic modelling of unsaturated high-plastic clay using results from a new triaxial test with controlled suction. Géotechnique 53(1):113–122CrossRefGoogle Scholar
  5. Boso M, Tarantino A, Mongiovì L (2005) A direct shear box improved with the osmotic technique. Proceedings of advanced experimental unsaturated soil mechanics, Trento, pp 85–91Google Scholar
  6. Bruno TJ, Svoronos PDN (2003) Handbook of basic tables for chemical analysis, 2nd edn. CRC Press, Boca Raton, FL, USAGoogle Scholar
  7. Cokca E, Erol O, Armangil F (2004) Effects of compaction moisture content on the shear strength of an unsaturated clay. Geotech Geol Eng 22(2):285–297CrossRefGoogle Scholar
  8. Cui YJ, Delage P (1996) Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique 46(2):291–311Google Scholar
  9. Cui YJ, Yahia-Aissa M, Delage P (2002) A model for the volume change behaviour of heavily compacted swelling clays. Eng Geol 64(2–3):233–250CrossRefGoogle Scholar
  10. Cuisiner O, Masrouri F (2004) Testing the hydromechanical behavior of a compacted swelling soil. Geotech Test J 27(6):598–606Google Scholar
  11. Cunningham MR, Ridley AM, Dineen K, Burland JB (2003) The mechanical behaviour of a reconstituted unsaturated silty clay. Geotechnique 53(2):183–194CrossRefGoogle Scholar
  12. Delage P (2002) Experimental unsaturated soil mechanics: State-of-art-report. 3rd International conference on unsaturated soils, vol 3, Recife Google Scholar
  13. Delage P, Cui YJ (2000) L’eau dans les sols non saturés. Éditions Techniques de l’ingénieur, Paris, vol C2, article C 301, Traité ConstructionGoogle Scholar
  14. Delage P, Suraj De Silva GPR, et De Laure E (1987) Un nouvel appareil triaxial pour les sols non saturés, vol 1. 9e European conference on soil mechanics and foundation engineering, Dublin, pp 26–28Google Scholar
  15. Delage P, Suraj De Silva GPR, Vicol T (1992) Suction controlled testing of non saturated soils with an osmotic consolidometer. 7th International conference expansive soils, Dallas, pp 206–211Google Scholar
  16. Delage P, Howat M, Cui YJ (1998) The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50(1–2):31–48CrossRefGoogle Scholar
  17. Dineen K, Burland JB (1995) A new approach to osmotically controlled oedometer testing. Proceedings of the 1st conference on unsaturated soils Unsat’95, vol 2. Balkema, Paris, pp 459–465Google Scholar
  18. Escario V (1969) Swelling of soils in contact with water at negative pressure. Proceedings of the 2nd international conference expansive clay soils, Texas A&M University, pp 207–217Google Scholar
  19. Escario V (1980) Suction controlled penetration and shear tests. Proceeedings of the 4th international conference on expansive soils, vol II. Denver, American Society of Civil Engineers, pp 781–797Google Scholar
  20. Escario V, Saez J (1986) The shear strength of partly saturated soils. Geotechnique 36(3):453–456. H.D. Schreiner and authors reply: Geotechnique, 37(4):523–524Google Scholar
  21. Esteban F (1990). Caracterización de la expansividad de una roca evaporítica. Identificación de los mecanismos de hinchamiento. Tesis doctoral de la Universidad de Cantabria, SantanderGoogle Scholar
  22. Fredlund DG, Morgenstern NR (1977) Stress state variables for unsaturated soils. J Geotech Eng ASCE 103(5):447–461Google Scholar
  23. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. John Wiley and Sons, New YorkGoogle Scholar
  24. Hoffmann C, Romero E, Alonso EE (2005) Combining different controlled-suction techniques to study expansive clays. International symposium advanced experimental unsaturated soil mechanics, Trento, June 27–29, 2005Google Scholar
  25. Jennings JEB, Burland JB (1962) Limitations to the use of effective stresses in partly saturated soils. Géotechnique 12(2):125–144Google Scholar
  26. Kanno T, Wakamatsu H (1993) Moisture adsorption and volume change of partially saturated bentonite buffer materials. Material research society symposia proceedings, vol 294. pp 425–430Google Scholar
  27. Kassiff G, Benshalom A (1971) Experimental relationship between swell pressure and suction. Géotechnique 21:245–255Google Scholar
  28. Lagerwerff JV, Ogata G, Eagle HE (1961) Control of osmotic pressure of culture solutions with polyethylene glycol. Science 133:1486–1487CrossRefGoogle Scholar
  29. Leong EC, Rahardjo H (2002) Soil-water characteristic curves of compacted residual soils. In: Jucá JFT, de Campos TMP, Marinho FAM (eds) Unsaturated soils. Proceedings of the 3rd international conference on unsaturated soils (UNSAT 2002), Recife, Brazil, vol 1. Swets & Zeitlinger, Lisse, The Netherlands. pp 271–276, 10–13 March 2002Google Scholar
  30. Lloret A, Villar MV, Sanchez M, Gens A, Pintado X, Alonso EE (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1):27–40CrossRefGoogle Scholar
  31. Marcial D (2003) Comportement hydromécanique et microstructural des matériaux de barrière ouvragée. Ph.D. thesis, École nationale des ponts et chaussées, Paris, FranceGoogle Scholar
  32. Matyas EL, Radhakrishna HS (1968) Volume change characteristics of partially saturated soils. Geotechnique 18(4):432–448CrossRefGoogle Scholar
  33. Nishimura T, Fredlund DG (2003) A new triaxial apparatus for high total suctions using relative humidity. Proceedings of the 12th Asian regional conference on soil mechanics and geotechnical engineering, vol 1. Singapore, pp 65–68Google Scholar
  34. Oldecop LA, Alonso EE (2004) Testing rockfill under relative humidity control. Geotech Test J ASTM 27(3):10. Paper ID: GTJ11847Google Scholar
  35. Richards BG (1974) Behaviour of unsaturated soils. In: Lee IK (ed), Soil mechanics—new horizons. American Elsevier, New York, pp 112–157Google Scholar
  36. Romero E (1999) Perturbation of the heat transfer and the friction factor of a rib roughened surface in an annular passage due to localized removal of the ribbing. Nucl Eng Des 188(1):85–96CrossRefGoogle Scholar
  37. Romero E, Gens A, Lloret A (2001) Temperature effects on the hydraulic behaviour of an unsaturated clay. Geotech Geol Eng 19(3–4):311–332CrossRefGoogle Scholar
  38. Saiyouri N, Hicher PY, Tessier D (2000) Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays. Mech Cohes Frict Mater 5:41–60CrossRefGoogle Scholar
  39. Slatter EE, Allman AA, Smith DW (2000) Suction controlled testing of unsaturated soils with an osmotic oedometer. Proceedings of the international conference on geo-engineering 2000. Melbourne, AustraliaGoogle Scholar
  40. Stokes RH, Robinson RA (1948) Ionic hydration and activity in electrolyte solutions. J Am Chem Soc 70:1870–1878CrossRefGoogle Scholar
  41. Tang A-M, Cui Y-J (2005) Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can Geotech J 42:287–296CrossRefGoogle Scholar
  42. Tang GX, Graham J, Wan AWL (1998) On yielding behaviour of an unsaturated sand-bentonite mixture. In Proceedings of the 2nd international conference on unsaturated soils, vol 1. Beijing, pp 149–154Google Scholar
  43. Tessier D (1984) Étude expérimentale de l’organisation des matériaux argileux: hydratation, gonflement et structuration au cours de la dessiccation et de la réhumectation. Ph.D. thesis, Université de Paris VII, Paris, FranceGoogle Scholar
  44. Vanapalli SK, Lane J (2002) A simple technique for determining the shear strength of unsaturated soils using the conventional direct shear apparatus. Second Canadian specialty conference on computer applications in geotechnique. Winnipeg, pp 245–253, April, 2002Google Scholar
  45. Vicol T (1990) Comportement hydraulique et mécanique d’un limon non saturé. Application à la modélisation. Thèse de doctorat de l’ENPC, Paris, 257 pGoogle Scholar
  46. Villar MV (2000) Caracterización termo-hidro-mecánica de una bentonita de Cabo de Gata. Ph.D. thesis, Universidad Complutense de Madrid, Madrid, SpainGoogle Scholar
  47. Villar MV, Martín PL, Lloret A (2005) Determination of water retention curves of two bentonites at high temperature. International symposium advanced experimental unsaturated soil mechanics. TrentoGoogle Scholar
  48. Waldron LJ, Manbeian T (1970) Soil moisture characteristics by osmosis with polyethylene glycol: a simple system with osmotic pressure data and some results. Soil Sci 110(6):401–404CrossRefGoogle Scholar
  49. Williams J, Shaykewich CF (1969) An evaluation of polyethylene glycol PEG 6000 and PEG 20000 in the osmotic control of soil water matric potential. Can J Soil Sci 102(6):394–398Google Scholar
  50. Young DF (1967) Effect of time-dependent stenosis on flow through a tube. American Society of Mechanical Engineers, 67-WA/BHF-2, 7 pGoogle Scholar
  51. Zur B (1966) Osmotic control the matric soil water potential. Soil Sci 102:394–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Civil EngineeringUniversity of ManitobaWinnipegCanada
  2. 2.Ecole Nationale des Ponts et ChausséesCERMESParisFrance
  3. 3.IDIAUniversidad Nacional de San JuanSan JuanArgentina

Personalised recommendations