Skip to main content

Membrane Lipid Biosynthesis in Purple Bacteria

  • Chapter
Book cover The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Membranes are essential to all living cells. They provide the boundary to the surrounding environment, allow the controlled exchange of compounds through membrane transporters, and serve as a matrix for membrane associated enzymes and protein complexes involved in the generation of energy or communication with the environment. Biomembranes are built from amphipathic, polar lipids that either on their own or in mixtures with other lipids spontaneously form a bilayer in aqueous solutions. Proteins are embedded into this lipid matrix serving many different functions. Photosynthetic purple bacteria have a very rich complement of membrane lipids including phospholipids not commonly found in bacteria such as phosphatidylcholine, glycolipids typical for plant chloroplasts such as sulfoquinovosyldiacylglycerol, and the betaine and ornithine lipids. These latter lipids lack phosphorus presumably allowing purple bacteria to outcompete other organisms in a phosphorusdepleted environment. Advances in the genetic analysis of lipid metabolism of purple bacteria and related bacteria of the α-proteobacteria group have provided us with many genes encoding enzymes for the biosynthesis of polar membrane lipids beyond those described for Escherichia (E.) coli. Lipid genes discovered first in Rhodobacter (Rba.) sphaeroides include the sqd genes required for sulfoquinovosyldiacylglycerol biosynthesis and the bta genes required for betaine lipid biosynthesis. Similar approaches in the closely related bacterium Sinorhizobium (Sr.) meliloti in combination with genome comparison provided the genes of purple bacteria encoding proteins of ornithine lipid biosynthesis and a new pathway for phosphatidylcholine biosynthesis. Advances in the analysis of membrane associated protein complexes gave new insights into specific interactions of lipids with these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACP:

acyl carrier protein

AdoHcy:

S-adenosylhomocysteine

AdoMet:

S-adenosylmethionine

CDP:

cytidine diphosphate

CL:

cardiolipin

CMP:

cytidine monophosphate

CTP:

cytidine triphosphate

DAG:

diacylglycerol

DGTS:

dicaylglycerol-N,N,N,-trimethylhomoserine

E. :

Escherichia

OL:

ornithine lipid

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdGro:

phosphatidylglycerol

Rba. :

Rhodobacter

SQDG:

sulfoquinovosyldiacylglycerol

Sr. :

Sinorhizobium

Tris:

tris-hydroxymethylaminomethane

References

  • Arondel V, Benning C and Somerville CR (1993) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem 268: 16002–16008

    PubMed  CAS  Google Scholar 

  • Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Takamiya K, Wada H and Ohta H (2006) Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141: 1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Aygun-Sunar S, Mandaci S, Koch HG, Murray IV, Goldfme H and Daldal F (2006) Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 61: 418–435

    Article  PubMed  CAS  Google Scholar 

  • Benning C (1998a) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49: 53–75

    Article  PubMed  CAS  Google Scholar 

  • Benning C (1998b) Membrane lipids in anoxygenic photosynthetic bacteria. In P-A Siegenthaler, N Murata, eds, Lipids in Photosynthesis: Structure, Function and Genetics, pp 83–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Benning C and Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280: 2397–2400

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992a) Identification of an operon involvedin sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol 174: 6479–6487

    PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992b) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 174: 2352–2360

    PubMed  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Huang ZH and Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Benson AA, Daniel H and Wiser R (1959) A sulfolipid in plants. Proc Natl Acad Sci USA 45: 1582–1587

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Edman M, Li L, Wikstrom M and Wieslander A (2001) Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J Biol Chem 276: 22056–22063

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov M, Sun J, Kaback HR and Dowhan W (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271: 11615–11618

    Article  PubMed  CAS  Google Scholar 

  • Boyce SG and Lueking DR (1984) Purification and characterization of a long-chain acyl coenzyme A thioesterase from Rhodopseudomonas sphaeroides. Biochemistry 23: 141–147

    Article  CAS  Google Scholar 

  • Broglie RM and Niederman RA (1979) Membranes of Rhodopseudomonas sphaeroides: Effect of cerulenin on assembly of chromatophore membrane. J Bacteriol 138: 788–798

    PubMed  CAS  Google Scholar 

  • Brooks JL and Benson AA (1972) Studies on the structure of an ornithine-containing lipid from Rhodospirillum rubrum. Arch Biochem Biophys 152: 347–355

    Article  PubMed  CAS  Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055–11060

    Article  PubMed  CAS  Google Scholar 

  • Campbell TB and Lueking DR (1983) Light-mediated regulation of phospholipid synthesis in Rhodopseudomonas sphaeroides. J Bacteriol 155: 806–816

    PubMed  CAS  Google Scholar 

  • Catucci L, Depalo N, Lattanzio VM, Agostiano A and Corcelli A (2004) Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43: 15066–15072

    Article  PubMed  CAS  Google Scholar 

  • Cedergren RA and Hollingsworth RI (1994) Occurrence of sulfoquinovosyl diacylglycerol in some members of the family Rhizobiaceae. J Lipid Res 35: 1452–1461

    PubMed  CAS  Google Scholar 

  • Cooper CL, Boyce SG and Lueking DR (1987) Purification and characterization of Rhodobacter sphaeroides acyl carrier protein. Biochemistry 26: 2740–2746

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE (2003) Bacterial membrane lipids: Where do we stand? Annu Rev Microbiol 57: 203–224

    Article  PubMed  CAS  Google Scholar 

  • de Rudder KE, Thomas-Oates JE and Geiger O (1997) Rhizobium meliloti mutants deficient in phospholipid N-methyl-transferase still contain phosphatidylcholine. J Bacteriol 179: 6921–6928

    PubMed  Google Scholar 

  • de Rudder KE, Sohlenkamp C and Geiger O (1999) Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274: 20011–20016

    Article  PubMed  Google Scholar 

  • DeChavigny A, Heacock PN and Dowhan W (1991) Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266: 5323–5332

    PubMed  CAS  Google Scholar 

  • Donohue TJ, Cain BD and Kaplan S (1982) Alterations in the phospholipid composition of Rhodopseudomonas sphaeroides and other bacteria induced by Tris. J Bacteriol 152: 595–606

    PubMed  CAS  Google Scholar 

  • Dörmann P and Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7: 112–118

    Article  PubMed  Google Scholar 

  • Dryden SC and Dowhan W (1996) Isolation and expression of the Rhodobacter sphaeroides gene (pgsA) encoding phosphatidyl-glycerophosphate synthase. J Bacteriol 178: 1030–1038

    PubMed  CAS  Google Scholar 

  • Edman M, Berg S, Storm P, Wikstrom M, Vikstrom S, Ohman A and Wieslander A (2003) Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 278: 8420–8428

    Article  PubMed  CAS  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Essigmann B, Hespenheide BM, Kuhn LA and Benning C (1999) Prediction of the active-site structure and NAD+ binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369: 30–41

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol : Anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Gage DA, Huang ZH and Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobarter sphaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27: 632–636

    Article  PubMed  CAS  Google Scholar 

  • Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, Lopez-Lara IM and Geiger O (2004) Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 53: 1757–1770

    Article  PubMed  CAS  Google Scholar 

  • Geiger O, Röhrs V, Weissenmayer B, Finan TM and Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32: 63–73

    Article  PubMed  CAS  Google Scholar 

  • Giroud C, Gerber A and Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29: 587–595

    CAS  Google Scholar 

  • Gorchein A (1973) Structure of the ornithine-containing lipid from Rhodopseudomonas spheroides. Biochim Biophys Acta 306: 137–141

    PubMed  CAS  Google Scholar 

  • Giiler S, Seeliger A, Härtel H, Renger G and Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    Article  Google Scholar 

  • Güler S, Essigmann B and Benning C (2000) A cyanobacterial gene, sqdX, required for biosynthesis of the sulfolipid sulfoquinovosyldiacylglycerol. J Bacteriol 182: 543–545

    Article  PubMed  Google Scholar 

  • Heinz E, Schmidt H, Hoch M, Jung KH, Binder H and Schmidt RR (1989) Synthesis of differentnucleoside 5′-diphospho-sulfoquinovoses and their use for studies on sulfolipid biosynthesis in chloroplasts. Eur J Biochem 184: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M and Eichenberger W (1996) Biosynthesis of diacylglyceryl-N,N,N-trimethylhomoserine in Rhodobacter sphaeroides and evidence for lipid-linked N methylation. J Bacteriol 178: 6140–6144

    PubMed  CAS  Google Scholar 

  • Hunte C (2005) Specific protein-lipid interactions in membrane proteins. Biochem Soc Trans 33: 938–942

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (1991) Polar lipids and fatty acids in the genus Rhodobacter. System Appl Microbiol 14: 228–234

    CAS  Google Scholar 

  • Imhoff JF and Bias-Imhoff U (1995) Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In: RE Blankenship, MT Madigan, CE Bauer, eds, Anoxygenic Photosynthetic Bacteria, pp 179–205. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Imhoff JF, Kushner DJ, Kushwaha SC and Kates M (1982) Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150: 1192–1201

    PubMed  CAS  Google Scholar 

  • Jones MR, Fyfe PK, Roszak AW, Isaacs NW and Cogdell RJ (2002) Protein-lipid interactions in the purple bacterial reaction centre. Biochim Biophys Acta 1565: 206–214

    Article  PubMed  CAS  Google Scholar 

  • Jorasch P, Wolter FP, Zahringer U and Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: Expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29: 419–430

    Article  PubMed  CAS  Google Scholar 

  • Jorasch P, Warnecke DC, Lindner B, Zahringer U and Heinz E (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphin-golipids and glycosylsterols. Eur J Biochem 267: 3770–3783

    Article  PubMed  CAS  Google Scholar 

  • Katona G, Andreasson U, Landau EM, Andreasson LE and Neutze R (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35Å resolution. J Mol Biol 331: 681–692

    Article  PubMed  CAS  Google Scholar 

  • Klug RM and Benning C (2001) Two enzymes of diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc Natl Acad Sci USA 98: 5910–5915

    Article  PubMed  CAS  Google Scholar 

  • Laible PD, Scott HN, Henry L and Hanson DK (2004) Towards higher-throughput membrane protein production for structural genomics initiatives. J Struct Funct Genomics 5: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Linscheid M, Diehl BW, Övermöhle M, Riedl I and Heinz E (1997) Membrane lipids of Rhodopseudomonas viridis. Biochim Biophys Acta 1347: 151–163

    PubMed  CAS  Google Scholar 

  • Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J and Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70: 19–41

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Morales F, Schobert M, Lopez-Lara IM and Geiger O (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149: 3461–3471

    Article  PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ and Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706–14711

    Article  PubMed  CAS  Google Scholar 

  • McMurry LM, Oethinger M and Levy SB (1998) Triclosan targets lipid synthesis. Nature 394: 531–532

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DE and Abdolrahimzadeh H (1974) The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. FEBS Lett 43: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H and Baddiley J (1974) Replacement of acidic phosphates by acidic glycolipids in Pseudomonas diminuta. Nature 249: 268–269

    Article  PubMed  CAS  Google Scholar 

  • Mulichak AM, Theisen MJ, Essigmann B, Benning C and Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96: 13097–13102

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Milano F, Dorogi M, Agostiano A, Laczko G, Szebenyi K, Varo G, Trotta M and Maroti P (2004) Protein/lipid interaction in the bacterial photosynthetic reaction center: Phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochemistry 43: 12913–12923

    Article  PubMed  CAS  Google Scholar 

  • Nishijima S, Asami Y, Uetake N, Yamagoe S, Ohta A and Shibuya 1 (1988) Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J Bacteriol 170: 775–780

    PubMed  CAS  Google Scholar 

  • Onishi JC and Niederman RA (1982) Rhodopseudomonas sphaeroides membranes: Alterations in phospholipid composition in aerobically and phototrophically grown cells. J Bacteriol 149: 831–839

    PubMed  CAS  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U and Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci USA 94: 10547–10553

    Article  PubMed  CAS  Google Scholar 

  • Palsdottir H and Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666: 2–18

    Article  PubMed  CAS  Google Scholar 

  • Pluschke G, Hirota Y and Overath P (1978) Function of phospholipids in Escherichia coli. Characterization of amutant deficient in cardiolipin synthesis. J Biol Chem 253: 5048–5055

    PubMed  CAS  Google Scholar 

  • Quin L, Hiser C, Mulichak A, Garavito RM and Ferguson-Miller S (2006) Identification of conserved lipid/detergent binding sites in a high resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA in press:

    Google Scholar 

  • Radcliffe CW, Steiner FX, Carman GM and Niederman RA (1989) Characterization and localization ofphosphatidylglycerophosphate andphosphatidylserine synthasesin Rhodobacter sphaeroides. Arch Microbiol 152: 132–137

    Article  PubMed  CAS  Google Scholar 

  • Riekhof WR, Andre C and Benning C (2005a) Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441: 96–105

    Article  PubMed  CAS  Google Scholar 

  • Riekhof WR, Sears BB and Benning C (2005b) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4: 242–252

    Article  PubMed  CAS  Google Scholar 

  • Rinyu L, Martin EW, Takahashi E, Maroti P and Wraight CA (2004) Modulation of the free energy of the primary quinone acceptor (QA) in reaction centers from Rhodobacter sphaeroides: contributions from the protein and protein-lipid(cardiolipin) interactions. Biochim Biophys Acta 1655: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Tietje C, Heinz E and Benning C (1995) Accumulation of UDP-sulfoquinovose in a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Biol Chem 270: 25792–25797

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Schäfer A, Xu N, Gage DA and Benning C (1997) Accumulation of sulfoquinovosyl-1-O-dihydroxyacetone in a sulfolipid-deficient mutant of Rhodobacter sphaeroides inactivated in sqdC. Arch Biochem Biophys 340: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ and Harwood JL (1979) Changes in acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J 181: 339–345

    PubMed  CAS  Google Scholar 

  • Sanda S, Leustek T, Theisen M, Garavito M and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Sato N and Murata N (1991) Transition of lipid phase in aqueous dispersions of diacylglyceryltrimethylhomoserine. Biochim Biophys Acta 1082: 108–111

    PubMed  CAS  Google Scholar 

  • Schmid PC, Kumar VV, Weis BK and Schmid HH (1991) Phosphatidyl-Tris rather than N-acylphosphatidylserine is synthesized by Rhodopseudomonas sphaeroides grown in Tris-containing media. Biochemistry 30: 1746–1751

    Article  PubMed  CAS  Google Scholar 

  • Seay T and Lueking DR (1986) Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides. Biochemistry 25: 2480–2745

    Article  PubMed  CAS  Google Scholar 

  • Seifert U and Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose:diacylglycerol sulfoquinovosyltranferase from chloroplast envelopes. Bot Acta 105: 197–205

    CAS  Google Scholar 

  • Shibuya I, Miyazaki C and Ohta A (1985) Alteration of phospholipid composition by combined defects in phosphatidylserine and cardiolipin synthases and physiological consequences in Escherichia coli. J Bacteriol 161: 1086–1092

    PubMed  CAS  Google Scholar 

  • Sohlenkamp C, de Rudder KE, Rohrs V, Lopez-Lara IM and Geiger O (2000) Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275: 18919–18925

    Article  PubMed  CAS  Google Scholar 

  • Sohlenkamp C, Lopez-Lara IM and Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42: 115–162

    Article  PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P and Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y and Yoshikawa S (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci USA 100: 15304–15309

    Article  PubMed  CAS  Google Scholar 

  • Van Mooy BA, Rocap G, Fredricks HF, Evans CT and Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103: 8607–8612

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C and Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423–447

    Article  CAS  Google Scholar 

  • Wakeham MC, Sessions RB, Jones MR and Fyfe PK (2001) Is there a conserved interaction between cardiolipin and the type II bacterial reaction center? Biophys J 80: 1395–1405

    Article  PubMed  CAS  Google Scholar 

  • Webb MS and Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060: 133–158

    Article  CAS  Google Scholar 

  • Weissenmayer B, Gao JL, Lopez-Lara IM and Geiger O (2002) Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol 45: 721–733

    Article  PubMed  CAS  Google Scholar 

  • White SW, Zheng J, Zhang YM and Rock] (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74: 791–831

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom M, Xie J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander A and Dowhan W (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute forphosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J Biol Chem 279: 10484–10493

    Article  PubMed  CAS  Google Scholar 

  • Wood BJB, Nichols BW and James AT (1965) The lipids and fatty acid metabolism of photosynthetic bacteria. Biochim Biophys Acta 106: 261–273

    PubMed  CAS  Google Scholar 

  • Xie J, Bogdanov M, Heacock P and Dowhan W (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J Biol Chem 281: 19172–19178

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Benning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Tamot, B., Benning, C. (2009). Membrane Lipid Biosynthesis in Purple Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_7

Download citation

Publish with us

Policies and ethics