Skip to main content

Metabolism of Inorganic Sulfur Compounds in Purple Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

This chapter focuses on dissimilatory and assimilatory metabolism of inorganic sulfur compounds by the bacteriochlorophyll-containing purple bacteria. Many anoxygenic phototrophic purple bacteria use inorganic sulfur compounds (e.g., sulfide, elemental sulfur, polysulfides, thiosulfate, or sulfide) as electron donors for reductive carbon dioxide fixation during photolithoautotrophic growth. With regard to their sulfur metabolism, purple bacteria are characterized by a great variability of sulfur substrates used and pathways employed. We will therefore first give an overview about the sulfur oxidation capabilities of the various groups of purple bacteria. Comparison of genome sequence data provides additional insight into the sulfur oxidation pathways. Special attention is given to current knowledge on the biochemical details of the metabolic pathways employed. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from purple bacteria, and Allochromatium vinosum, a representative of the Chromatiaceae, has been especially well characterized also on a molecular genetic level. Comparative genomics in combination with older biochemical data results in a clear picture of sulfate assimilation and the enzymes involved in purple bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Acd. :

Acidiphilium

Alc. :

Allochromatium

APS:

adenosine-5′-phosphosulfate

DMSP:

dimethylsulfoniopropionate

E. :

Escherichia

EC:

extracellular

Ect. :

Ectothiorhodospira

Ers. :

Ectothiorhodosinus

FccAR:

flavocytochrome c

Hlr. :

Halorhodospira

IC:

intracellular

Pcs. :

Paracoccus

Rba. :

Rhodobacter

Rdv. :

Rhodovulum

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

SQR:

sulfide:quinone oxidoreductase

Tca. :

Thiocapsa

Trs. :

Thiorhodospira

U:

unknown

References

  • Adkins JP, Madigan MT, Mandelco L, Woese CR and Tanner RS (1993) Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43: 514–520

    PubMed  CAS  Google Scholar 

  • Alguero M, Dahl C and Trüper HG (1988) Partial purification of ADP sulfurylase from the purple sulfur bacterium Thiocapsa rosoepersicina. Microbiologia SEM 4: 149–160

    CAS  Google Scholar 

  • Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP and Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183: 6107–6118

    PubMed  CAS  Google Scholar 

  • Baldock MI, Denger K, Smits THM and Cook AM (2007) Roseovarius sp. strain 217: Aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271: 202–206

    PubMed  CAS  Google Scholar 

  • Bamford VA, Berks BC and Hemmings AM (2002a) Novel domain packing in the crystal structure of a thiosulphate-oxidizing enzyme. Biochem Soc Trans 638–642

    Google Scholar 

  • Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC and Hemmings AM (2002b) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21: 5599–5610

    PubMed  CAS  Google Scholar 

  • Bardischewsky F, Quentmeier A and Friedrich CG (2006) The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro. FEMS Microbiol Lett 258: 121–126

    PubMed  CAS  Google Scholar 

  • Bartsch RG, Newton GL, Sherrill C and Fahey RC (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178: 4742–4746

    PubMed  CAS  Google Scholar 

  • Beynon JD, MacRae IJ, Huston SL, Nelson DC, Segel IH and Fisher AJ (2001) Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riflia pachyptila. Biochemistry 40: 14509–14517

    PubMed  CAS  Google Scholar 

  • Bick JA, Dennis JJ, Zylstra GJ, Nowack J and Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182: 135–142

    PubMed  CAS  Google Scholar 

  • Blöthe, M and Fischer, U (2000) New insights in sulfur metabolism of purple and green phototrophic sulfur bacteria and their spheroplasts. BIOspektrum, Special edition 1st Joint Congress of DGHM, ÖGHMP and VAAM: ‘Microbiology 2000,” 12 bis 16 März, München : 62

    Google Scholar 

  • Bosshard HR, Davidson MW, Knaff DB and Millett F (1986) Complex formation and electron transfer between mitochondrial cytochrome c and flavocytochrome c552 from Chromatium vinosum. J Biol Chem 261: 190–193

    PubMed  CAS  Google Scholar 

  • Brettar I, Christen R and Höfle MG (2002) Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. Int J Syst Evol Microbiol 52: 1851–1857

    PubMed  CAS  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    PubMed  CAS  Google Scholar 

  • Brune DC (1995a) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163: 391–399

    PubMed  CAS  Google Scholar 

  • Brune DC (1995b) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan, MT and Bauer, CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 847–870. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Brüser T, Selmer T and Dahl C (2000) ‘ADP sulfurylase’ from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J Biol Chem 275: 1691–1698

    PubMed  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J and Mityushina L (1999) Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian Soda lake. Int J Syst Bacteriol 49: 697–703

    PubMed  Google Scholar 

  • Chen ZW, Koh M, van Driessche G, van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA and Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266: 430–432

    PubMed  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W and Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145: 627–635

    PubMed  CAS  Google Scholar 

  • Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology 142: 3363–3372

    PubMed  CAS  Google Scholar 

  • Dahl C (1999) Deposition and oxidation of polymeric sulfur in prokaryotes. In: Steinbüchel A (ed) Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers, pp 27–34. Wiley-VCH, Weinheim

    Google Scholar 

  • Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Hell R, Dahl, C, Leustek, T and Knaff, DB (eds) Sulfur in Phototrophic Organisms (Advances in Photosynthesis and Respiration, Vol 27). Springer, Dordrecht, in press

    Google Scholar 

  • Dahl C and Prange A (2006) Bacterial sulfur globules: Occurrence, structure and metabolism. In: Shively JM (ed) Inclusions in Prokaryotes, pp 21–51. Springer, Heidelberg

    Google Scholar 

  • Dahl C and Trüper HG (1989) Comparative enzymology of sulfite oxidation in Thiocapsa roseopersicina strains 6311, M1 and BBS under chemotrophic and phototrophic conditions. Z Naturforsch 44c: 617–622

    Google Scholar 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O and Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187: 1392–1404

    PubMed  CAS  Google Scholar 

  • Dahl C, Schulte A and Shin DH (2007) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DsrEFH from Allochromatium vinousm. Acta Cryst F 63: 890–892

    Google Scholar 

  • Davidson MW, Gray GO and Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c-552 with cytochromes c studied by affinity chromatography. FEBS Lett 187: 155–159

    CAS  Google Scholar 

  • de Jong GAH, Hazeu W, Bos P and Kuenen JG (1997) Isolation of the tetrathionate hydrolase from Thiobadllus acidophilus. Eur J Biochem 243: 678–683

    PubMed  Google Scholar 

  • de Jong GAH, Tang JA, Bos P, de Vries S and Kuenen GJ (2000) Purification and characterization of a sulfitexytochrome c oxidoreductase from Thiobadllus acidophilus. J Mol Catal B 8: 61–67

    Google Scholar 

  • Denger K, Smits THM and Cook AM (2006) Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology 152: 3197–3206

    PubMed  CAS  Google Scholar 

  • Denger K, Weinitschke S, Hollemeyer K and Cook AM (2004) Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182: 254–258

    PubMed  CAS  Google Scholar 

  • Dhillon A, Goswami S, Riley M, Teske A and Sogin M (2005) Domain evolution and functional diversification of sulfite reductases. Astrobiology 5: 18–29

    PubMed  CAS  Google Scholar 

  • Doonan CJ, Kappler U and George GN (2006) Structure of the active site of sulfite dehydrogenase from Starkeya novella. Inorg Chem 45: 7488–7492

    PubMed  CAS  Google Scholar 

  • Epel B, Schäfer KO, Quentmeier A, Friedrich C and Lubitz W (2005) Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J Biol Inorg Chem 10: 636–642

    PubMed  CAS  Google Scholar 

  • Feng C, Kappler U, Tollin G and Enemark JH (2003) Intramolecular electron transfer in a bacterial sulfite dehydrogenase. J Am Chem Soc 125: 14696–14697

    PubMed  CAS  Google Scholar 

  • Fischer U (1984) Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria. In: Müller A and Krebs, B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology, pp 383–407. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Foster BA, Thomas SM, Mahr JA, Renosto F, Patel HC and Segel IH (1994) Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum: Identification of a likely allosteric domain. J Biol Chem 269: 19777–19786

    PubMed  CAS  Google Scholar 

  • Franz B, Lichtenberg H, Hormes J, Modrow H, Dahl C and Prange A (2007) Utilization of solid ‘elemental’ sulfur by the phototrophic purple salfur bacterium Allochromatium vinosum: A sulfur K-edge XANES spectroscopy study. Microbiology 153: 1268–1274

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882

    PubMed  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A and Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259

    PubMed  CAS  Google Scholar 

  • Frigaard NU and Bryant DA (2008) Genomic insights into the sulfur me tabolismof phototrophic green sulfur bacteria. In: Hell R, Dahl, C, Knaff, DB and Leustek, T (eds) Sulfur Metabolism in Phototrophic Organisms (Advances in Photosynthesis and Respiration, Vol 27). Springer, Dordrecht, in press

    Google Scholar 

  • Fritz G, Buchert T, Huber H, Stetter KO and Kroneck PMH (2000) Adenylylsulfate reductases from archaea and bacteria are 1:1 alpha beta-heterodimeric iron-sulfur flavoenzymes — high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett 473: 63–66

    PubMed  CAS  Google Scholar 

  • Fukumori Y, Yamanaka T (1979) A high-potential nonheme iron protein (HiPIP)-linked, thiosulfate-oxidizing enzyme derived from Chromatium vinosum. Curr Microbiol 3: 117–120

    CAS  Google Scholar 

  • Glaeser J and Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171: 405–416

    PubMed  CAS  Google Scholar 

  • Gogtova GI and Vainstein MB (1981) Thiosulfate oxidation in the dark by the purple sulfur bacterium Ectothiorhodospira shaposhnikovii. Mikrobiologiya 55: 960–963 (in Russian)

    Google Scholar 

  • Gonzalez JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP and Moran MA (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53: 1261–1269

    PubMed  CAS  Google Scholar 

  • Gorlenko VM, Bryantseva IA, Panteleeva EE, Tourova TP, Kolganova TV, Makhneva ZK and Moskalenko AA (2004) Ectothiorhodosinus mongolicum gen. nov., sp. nov, a new purple bacterium from a soda lake in Mongolia. Microbiology 73: 66–73

    CAS  Google Scholar 

  • Griesbeck C, Hauska G and Schütz M (2000) Biological sulfide oxidation: Sulfide:quinone reductase (SQR), the primary reaction. In: Pandalai SG (ed) Recent Research Developments in Microbiology, Vol 4, pp 179–204. Research Signpost, Trivandrum, India

    Google Scholar 

  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M and Hauska G (2002) Mechanism of sulfide-quinone oxidoreductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41: 11552–11565

    PubMed  CAS  Google Scholar 

  • Hansen TA and Imhoff JF (1985) Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria. Int J Syst Bacteriol 35: 115–116

    Google Scholar 

  • Hansen TA and van Gemerden H (1972) Sulfide utilization by purple sulfur bacteria. Arch Mikrobiol 86: 49–56

    PubMed  CAS  Google Scholar 

  • Hansen TA and Veldkamp H (1973) Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. Arch Mikrobiol 92: 45–58

    PubMed  CAS  Google Scholar 

  • Haverkamp T and Schwenn JD (1999) Structure and function of a cysBJIH gene cluster in the purple sulfur bacterium Thiocapsa roseopersicina. Microbiology 145: 115–125

    PubMed  CAS  Google Scholar 

  • Hell R, Jost R, Berkowitz O and Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22: 245–257

    PubMed  CAS  Google Scholar 

  • Hensen D, Sperling D, Trüper HG, Brune DC and Dahl C (2006) Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Mol Microbiol 62: 794–810

    PubMed  CAS  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96: 2757–2816

    PubMed  CAS  Google Scholar 

  • Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C and Trüper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143: 2891–2902

    PubMed  CAS  Google Scholar 

  • Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180

    PubMed  CAS  Google Scholar 

  • Hiraishi A and Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44: 665–673

    Google Scholar 

  • Hiraishi A and Ueda Y (1995) Isolation and characterization of Rhodovulum strictum sp. nov. and some otherpurple nonsulfur bacteria from colored blooms in tidal and seawater pools. Int J Syst Bacteriol 45: 319–326

    PubMed  CAS  Google Scholar 

  • Hiraishi A, Urata K and Satoh T (1995) A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 45: 226–234

    PubMed  CAS  Google Scholar 

  • Hirschler-Rea A, Matheron R, Riffaud C, Moune S, Eatock C, Herbert RA, Willison JC and Caumette P (2003) Isolation and characterization of spirilloid purple phototrophic bacteria forming red layers in microbial mats of Mediterranean salterns: Description of Halorhodospira neutriphila sp. nov. and emendation of the genus Halorhodospira. Int J Syst Evol Microbiol 53: 153–163

    PubMed  CAS  Google Scholar 

  • Hryniewicz M and Kredich NM (1991) The cysP promoter of Salmonella typhimurium: Characterization of two binding sites for CysB protein, studies of in vivo transcription initiation and demonstration of the anti-inducer effects of thiosulfate. J Bacteriol 173: 5876–5886

    PubMed  CAS  Google Scholar 

  • Ikeuchi Y, Shigi N, Kato J, Nishimura A and Suzuki T (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21: 97–108

    PubMed  CAS  Google Scholar 

  • Imhoff JF (1982) Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch Microbiol 132: 197–203

    CAS  Google Scholar 

  • Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototropic purple bacterium. Syst Appl Microbiol 4: 512–521

    Google Scholar 

  • Imhoff JF (2001) The anoxygenic phototrophic purple bacteria. In: Boone DR, Castenholz, RW and Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, Vol 1, pp 631–637. Springer, New York

    Google Scholar 

  • Imhoff JF (2005a) Family I. Chromatiaceae Bavendamm 1924, 125AL emend. Imhoff 1984b, 339. In: Brenner DJ, Krieg, NR, Staley, JT and Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, Vol 2, part B, pp 3–40. Springer, New York

    Google Scholar 

  • Imhoff JF (2005b) Family II. Ectothiorhodospiraceae Imhoff 1984b, 339VP. In: Brenner DJ, Krieg, NR, Staley, JT and Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, Vol 2, part B, pp 41–57. Springer, New York

    Google Scholar 

  • Imhoff JF, Kramer M and Trüper HG (1983) Sulfate assimilation in Rhodopseudomonas sulfidophila. Arch Microbiol 136: 96–101

    CAS  Google Scholar 

  • Imhoff JF, Süling J and Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermo chromatium. Int J Syst Bacteriol 48: 1129–1143

    PubMed  Google Scholar 

  • Imhoff JF, Hiraishi A and Süling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg, NR, Staley, JT and Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, Vol 2, part A, pp 119–132. Springer, New York

    Google Scholar 

  • Jørgensen BB (1990) The sulfur cycle of freshwater sediments: Role of thiosulfate. Limnol Oceanogr 35: 1329–1342

    Google Scholar 

  • Kappler U (2007) Bacterial sulfite-oxidizing enzymes — enzymes for chemolithotrophy only? In: Dahl C and Friedrich CG (eds) Microbial Sulfur Metabolism, pp 151–169. Springer, Heidelberg

    Google Scholar 

  • Kappler U and Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation (minireview). FEMS Microbiol Lett 203: 1–9

    PubMed  CAS  Google Scholar 

  • Kappler U and Bailey S (2005) Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280: 24999–245007

    PubMed  CAS  Google Scholar 

  • Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG and Dahl C (2000) Sulfitexytochrome c oxidoreductase from Thiobacillus novellus — Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275: 13202–13212

    PubMed  CAS  Google Scholar 

  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152: 279–290

    PubMed  CAS  Google Scholar 

  • Knobloch K, Schmitt W, Schleifer G, Appelt N and Müller H (1981) On the enzymatic system thiosulfate-cytochrome c-oxidoreductase. In: Bothe H and Trebst A (eds) Biology of Inorganic Nitrogen and Sulfur, pp 359–365. Springer, Berlin

    Google Scholar 

  • Kompantseva EI (1985) New halophilic purple bacteria Rhodobacter euryhalinus sp. nov. Mikrobiologiya 54: 974–981 (in Russian)

    CAS  Google Scholar 

  • Kompantseva EI and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum. Microbiology 53: 775–781

    Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schürmann P, Schünemann V, Trautwein AX, Kroneck PMH and Brunold C (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276: 42881–42886

    PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH and Brunold C (2002) The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277: 21786–21791

    PubMed  CAS  Google Scholar 

  • Kostanjevecki V, Brige A, Meyer TE, Cusanovich MA, Guisez Y and van Beeumen J (2000) A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira vacuolata. J Bacteriol 182: 3097–3103

    PubMed  CAS  Google Scholar 

  • Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E and Kröger A (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem 206: 503–510

    PubMed  CAS  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, pp 514–527. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Kusai K and Yamanaka T (1973) The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325: 304–314

    PubMed  CAS  Google Scholar 

  • Kusche, WH (1985) Untersuchungen an Elektronentransportproteinen und zum Schwefelstoffwechsel in Ectothiorhodospiraceae. PhD dissertation, University of Bonn, Germany

    Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P and Hirsch P (1999) Roseovarius tolerons gen. nov, sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49: 137–147

    PubMed  CAS  Google Scholar 

  • Leguijt T (1993) Photosynthetic electron transfer in Ectothiorhodospira. PhD Dissertation, University of Amsterdam

    Google Scholar 

  • Leustek, T, Martin, MN, Bick, JA and Davies, JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141–165

    PubMed  CAS  Google Scholar 

  • Leustek T and Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637–643

    PubMed  CAS  Google Scholar 

  • Leyh TS (1993) The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol 28: 515–542

    PubMed  CAS  Google Scholar 

  • Liss P (1999) Biogeochemistry — Take the shuttle-from marine algae to atmospheric chemistry. Science 285: 1217–1218

    CAS  Google Scholar 

  • Lu W-P, Swoboda EP and Kelly DP (1985) Properties of the thiosulfate-oxidizing multi-enzyme system from Thiobadllus versutus. Biochim Biophys Acta 828: 116–122

    CAS  Google Scholar 

  • Lübbe YJ, Youn H-S, Timkovich R and Dahl C (2006) Siro(haem)amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c diamide synthase for sulfur oxidation. FEMS Microbiol Lett 261: 194–202

    PubMed  Google Scholar 

  • MacRae IJ, Segel IH and Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: Insights into the allosteric regulation of sulfate assimilation. Biochemistry 40: 6795–6804

    PubMed  CAS  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM and Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: A structural biology overview. Prog Biophys Molec Biol 89: 292–329

    CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A and Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29: 653–671

    PubMed  Google Scholar 

  • Meulenberg R, Pronk JT, Frank J, Hazeu W, Bos P and Kuenen JG (1992a) Purification andpartial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobadllus acidophilus. Eur J Biochem 209: 367–374

    PubMed  CAS  Google Scholar 

  • Meulenberg R, Pronk JT, Hazeu W, Bos P and Kuenen JG (1992b) Oxidation of reduced sulphur compounds by intact cells of Thiobadllus acidophilus. Arch Microbiol 157: 161–168

    CAS  Google Scholar 

  • Meulenberg R, Pronk JT, Hazen W, van Dijken JP, Frank J, Bos P and Kuenen JG (1993) Purification and partial characterization of thiosulphate dehydrogenase from Thiobadllus acidophilus. J Gen Microbiol 139: 2033–2039

    CAS  Google Scholar 

  • Meyer TE and Cusanovich MA (2003) Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Photosynth Res 76: 111–126

    PubMed  CAS  Google Scholar 

  • Milford AD, Achenbach LA, Jung DO and Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174: 18–27

    PubMed  CAS  Google Scholar 

  • Moran MA, Gonzalez JM and Kiene RP (2003) Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiol J 20: 375–388

    CAS  Google Scholar 

  • Myers JD and Kelly DJ (2005) A sulphite respiration system in the chemoheter otrophic human pathogen Campylobacter jejuni. Microbiology 151: 233–242

    PubMed  CAS  Google Scholar 

  • Neumann S, Wynen A, Trüper HG and Dahl C (2000) Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway. Mol Biol Reports 27: 27–33

    CAS  Google Scholar 

  • Neutzling O and Trüper HG (1982) Assimilatory sulfur metabolism in Rhodopseudomonas sulfoviridis. Arch Microbiol 133: 145–148

    CAS  Google Scholar 

  • Neutzling O, Imhoff JF and Trüper HG (1984) Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch Microbiol 137: 256–261

    CAS  Google Scholar 

  • Neutzling O, Pfleiderer C and Trüper HG (1985) Dissimilatory sulphur metabolism in phototrophic ‘non-sulphur’ bacteria. J Gen Microbiol 131: 791–798

    CAS  Google Scholar 

  • Newton ILG, Woyke T, Auchtung TA, Drily GF, Dutton RJ, Fisher MC, Fontanez KM, Lau E, Stewart FJ, Richardson PM, Barry KW, Saunders E, Detter JC, Wu D, Eisen JA and Cavanaugh CM (2007) The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315: 998–1000

    PubMed  CAS  Google Scholar 

  • Numata T, Fukai S, Ikeuchi Y, Suzuki T and Nureki O (2006) Structural basis for sulfur relay to RNA mediated by heterohexameric TusBCD complex. Structure 14: 357–366

    PubMed  CAS  Google Scholar 

  • Ono B, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J and Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: A new outlook on pathway and regulation. Yeast 15: 1365–1375

    PubMed  CAS  Google Scholar 

  • Oren A, Kessel M and Stackebrandt E (1989) Ectothiorhodospira marismortui sp. nov., an obligately anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch Microbiol 151: 524–529

    CAS  Google Scholar 

  • Pao SS, Paulsen IT and Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1–34

    PubMed  CAS  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG and Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169: 434–444

    PubMed  CAS  Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum Press, New York

    Google Scholar 

  • Pfennig N, Lunsdorf H, Süling J and Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168: 39–45

    PubMed  CAS  Google Scholar 

  • Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM and Pereira IAC (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605: 67–82

    PubMed  CAS  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV and Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex — a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45: 249–262

    PubMed  CAS  Google Scholar 

  • Podgorsek L and Imhoff JF (1999) Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat Microb Ecol 17: 255–265

    Google Scholar 

  • Pott AS and Dahl C (1998) Sirohaem-sulfite reductase and other proteins encoded in the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881–1894

    PubMed  CAS  Google Scholar 

  • Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C and Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428: 446–454

    PubMed  CAS  Google Scholar 

  • Prange A, Chauvistre R, Modrow H, Hormes J, Trüper HG and Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148: 267–276

    PubMed  CAS  Google Scholar 

  • Prange A, Engelhardt H, Trüper HG and Dahl C (2004) The role of the sulfur globule proteins of Allochromatium vinosum: Mutagenesis of the sulfur globule protein genes and expression studies by real-time RT PCR. Arch Microbiol 182: 165–174

    PubMed  CAS  Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P and Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293–306

    CAS  Google Scholar 

  • Quentmeier A and Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503: 168–172

    PubMed  CAS  Google Scholar 

  • Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R and Friedrich CG (2003) Sulfur oxidation in Paracoccus pantotrophus: Interaction of the sulfur-binding protein Sox YZ with the dimanganese SoxB protein. Biochem Biophys Res Commun 312: 1011–1018

    PubMed  CAS  Google Scholar 

  • Quentmeier A, Kraft R, Kostka S, Klockenkamper R and Friedrich CG (2000) Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol 173: 117–125

    PubMed  CAS  Google Scholar 

  • Raitsimring AM, Kappler U, Feng CJ, Astashkin AV and Enemark JH (2005) Pulsed EPR studies of a bacterial sulfite-oxidizing enzyme with pH-invariant hyperfine interactions from exchangeable protons. Inorg Chem 44: 7283–7285

    PubMed  CAS  Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S and Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Enivron Microbiol 70: 4491–4498

    Google Scholar 

  • Raymond JC and Sistrom WR (1969) Ectothiorhodospira halophila — a new species of the genus Ectothiorhodospira. Arch Mikrobiol 69: 121–126

    PubMed  CAS  Google Scholar 

  • Reinartz M, Tschäpe J, Brüser T, Trüper HG and Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170: 59–68

    PubMed  CAS  Google Scholar 

  • Renosto F, Martin RL, Borrell JL, Nelson DC and Segel IH (1991) ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm). Arch Biochem Biophys 290: 66–78

    PubMed  CAS  Google Scholar 

  • Rijkenberg MJA, Kort R and Hellingwerf KJ (2001) Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175: 369–375

    PubMed  CAS  Google Scholar 

  • Rohwerder T and Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149: 1699–1709

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Uchino M, Falsen E, Zhukova NV, Mikhailov VV and Uchimura T (2003) Rheinheimera pacifica sp. nov., a novel halotolerant bacterium isolated from deep sea water of the Pacific. Int J Syst Evol Microbiol 53: 1973–1977

    PubMed  CAS  Google Scholar 

  • Rother D, Heinrich HJ, Quentmeier A, Bardischewsky F and Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB 17. J Bacteriol 183: 4499–4508

    PubMed  CAS  Google Scholar 

  • Rother D, Orawski G, Bardischewsky F and Friedrich CG (2005) SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus. Microbiology 151: 1707–1716

    PubMed  CAS  Google Scholar 

  • Sabehi G, Loy A, Jung K-H, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M and Béjà O (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biology 3: 1409–1417

    Article  CAS  Google Scholar 

  • Sander J, Engels-Schwarzlose S and Dahl C (2006) Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 186: 357–366

    PubMed  CAS  Google Scholar 

  • Schedel M, Vanselow M and Trüper HG (1979) Siroheme sulfite reductase from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch Microbiol 121: 29–36

    CAS  Google Scholar 

  • Schmidt M, Priemé A and Stougaard P (2007) Arsukibacterium ikkense gen. nov., sp. nov., anovel alkaliphilic, enzyme-producing gamma-Proteobacterium isolated from a cold and alkaline environment in Greenland. Syst Appl Microbiol 30: 197–201

    PubMed  CAS  Google Scholar 

  • Schmitt W, Schleifer G and Knobloch K (1981) The enzymatic system thiosulfatexytochrome c oxidoreductase from photolithoautotrophically grown Chromatium vinosum. Arch Microbiol 130: 334–338

    CAS  Google Scholar 

  • Schütz M, Shahak Y, Padan E and Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus. J Biol Chem 272: 9890–9894

    PubMed  Google Scholar 

  • Schütz M, Maldener I, Griesbeck C and Hauska G (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181: 6516–6523

    PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14: 140–145

    Google Scholar 

  • Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulphate by Chromatium sp. strain D. J Gen Microbiol 42: 371–380

    PubMed  CAS  Google Scholar 

  • Smith AJ and Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42: 357–370

    PubMed  CAS  Google Scholar 

  • Sorokin DY and Kuenen JG (2005) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29: 685–702

    PubMed  CAS  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA and Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30: 113–123

    PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Kuznetsov BB, Bryantseva IA and Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov, sp. nov., anew alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake. Microbiology 69: 75–82

    CAS  Google Scholar 

  • Sorokin DY, Kuenen JG and Jetten MSM (2001) Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175: 94–101

    PubMed  CAS  Google Scholar 

  • Sperling D, Kappler U, Wynen A, Dahl C and Trüper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162: 257–264

    PubMed  CAS  Google Scholar 

  • Srinivas TNR, Kumar PA, Sasikala C, Ramana CV, Süling J and Imhoff JF (2006) Rhodovulum marinum sp. nov., a novel phototrophic purple non-sulfur alphaproteobacterium from marine tides of Visakhapatnam, India. Int J Syst Evol Microbiol 56: 1651–1656

    PubMed  CAS  Google Scholar 

  • Steinmetz MA and Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, characterization and sulfur metabolism. Arch Microbiol 131: 19–26

    CAS  Google Scholar 

  • Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35: 1417–1423

    CAS  Google Scholar 

  • Steudel R (2000) The chemical sulfur cycle. In: Lens P and Hulshoff Pol, W (eds) Environmental Technologies to Treat Sulfur Pollution, pp 1–31. IWA Publishing, London

    Google Scholar 

  • Steudel R and Eckert B (2003) Solid sulfur allotropes. In: Steudel R (ed) Elemental Sulfur and Sulfur-Rich Compounds, pp 1–79. Springer, Berlin

    Google Scholar 

  • Steudel R, Holdt G, Visscher PT and van Gemerden H (1990) Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 155: 432–437

    Google Scholar 

  • Straub KL, Rainey FA and Widdel F (1999) Rhodovulum iodosum sp. nov, and Rhodovulumrobiginosum sp. nov., two newmarine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol 49: 729–735

    Article  PubMed  CAS  Google Scholar 

  • Then J and Trüper HG (1981) The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis. Arch Microbiol 130: 143–146

    CAS  Google Scholar 

  • Then J and Trüper HG (1983) Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Arch Microbiol 135: 254–258

    CAS  Google Scholar 

  • Then J and Trüper HG (1984) Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochloris. Arch Microbiol 139: 295–298

    CAS  Google Scholar 

  • Trüper HG (1968) Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cells. J Bacteriol 95: 1910–1920

    PubMed  Google Scholar 

  • Trüper HG (1978) Sulfur metabolism. In: Clayton RK and Sistrom, WR (eds) The Photosynthetic Bacteria, pp 677–690. Plenum, New York

    Google Scholar 

  • Trüper HG(1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A and Krebs, B (eds) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 367–382. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • van Gemerden, H (1968) On the ATP generation by Chromatium in the dark. Arch Mikrobiol 64: 118–124

    PubMed  Google Scholar 

  • van Gemerden H (1987) Competition between purple sulfur bacteria and green sulfur bacteria: role of sulfide, sulfur and polysulfides. In: Lindholm T (ed) Ecology of Photosynthetic Prokaryotes With Special Reference to Meromictic Lakes and Coastal Lagoons, pp 13–27. Abo Academy Press, Abo

    Google Scholar 

  • Vidmar JJ, Tagmount A, Cathala N, Touraine B and Davidian JCE (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475: 65–69

    PubMed  CAS  Google Scholar 

  • Visscher PT and Taylor BF (1993) Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl Environ Microbiol 59: 93–96

    PubMed  CAS  Google Scholar 

  • Visscher PT and van Gemerden H (1991) Photoauto trophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol Lett 81: 247–250

    CAS  Google Scholar 

  • Visscher PT, Nijburg JW and van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81

    CAS  Google Scholar 

  • Visser JM, de Jong GAH, Robertson LA and Kuenen JG (1996) Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5. Arch Microbiol 166: 372–378

    PubMed  CAS  Google Scholar 

  • Wang X, Modak HV and Tabita FR (1993) Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. J Bacteriol 175: 7109–7114

    PubMed  CAS  Google Scholar 

  • Wodara C, Bardischewsky F and Friedrich CG (1997) Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179: 5014–5023

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Guiliano L, Chernikova TN, Gentile G, Abraham WR, Lunsdorf H, Timmis KN and Golyshin PN (2001) Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51: 2133–2143

    PubMed  CAS  Google Scholar 

  • Yurkov VV (2006) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow, S, Rosenberg, E, Schleifer, K-H and Stackebrandt E (eds) The Prokaryotes, Vol 5, pp 562–584. Springer, New York

    Google Scholar 

  • Yurkov VV, Krasil’nikova EN and Gorlenko VM (1994) Thiosulfate metabolism in the aerobic bacteriochlorophyll-a-containing bacteria Erythromicrobium hydrolyticum and Roseococcus thiosulfatophilus. Microbiology 63: 91–94

    Google Scholar 

  • Zaar A, Fuchs G, Golecki JR and Overmann J (2003) A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. Nov. Arch Microbiol 179: 174–183

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Dahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Sander, J., Dahl, C. (2009). Metabolism of Inorganic Sulfur Compounds in Purple Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_30

Download citation

Publish with us

Policies and ethics