Skip to main content

Respiration and Respiratory Complexes

  • Chapter
The Purple Phototrophic Bacteria

Summary

Respiration in facultative phototrophs is a flexible metabolic process that involves various electron donors and acceptors. A good example of such respiratory flexibility can be found in Rhodobacter species, most of them being equipped with genes that encode five distinct oxidases having different oxygen affinities. One of these, the cytochrome cbb 3 oxidase is prevalent at low oxygen tensions, and terminates a highly coupled electron transfer pathway which is formed by a ‘core’ of redox components, e.g., quinones, the cytochrome bc 1 complex and cytochrome c, in common with the photosynthetic apparatus. Thus, by modulating expression of different terminal oxido-reductases that lock onto a core electron transfer pathway, Rhodobacter species can survive in a range of oxic, micro-oxic, and anoxic environments either in the dark or in the light.

This chapter covers first the types and basic characteristics of the terminal oxidases in a few Rhodobacter species; then, respiratory substrates other than oxygen are examined. These substrates include orthodox anaerobic electron acceptors such as DMSO or TMAO but also arsenics as unconventional bioenergetics substrates. Finally, a synopsis of the data examining the functional interactions between photosynthetic and respiratory ETP is given along with a phylogenetic scenario suggesting that respiration is more ancient than both anoxygenic and oxygenic photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C. :

Chloroflexus

CcO:

cytochrome c oxidase

DMS:

dimethylsulfide

DMSO:

dimethylsulfoxide

E. :

Escherichia

HiPIP:

high-potential iron-sulfur protein

Rba. :

Rhodobacter

RC:

photochemical reaction center

Rps. :

Rhodopseudomonas

Rsb. :

Roseobacter

Rvu. :

Rhodovulum

T :

Thermus

TMAO:

trimethylamine-N-oxide

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

UQ:

ubiquinone

References

  • Ädelroth P and Brzezinski P (2004) Surface-mediated protontransfer reactions in membrane-bound proteins. Biochim Biophys Acta 1655: 102–115

    PubMed  Google Scholar 

  • Ädelroth P and Hosler JP (2006) Surface proton donors for the D-pathway of cytochrome c oxidase in the absence of subunit III. Biochemistry 45: 8308–8318

    PubMed  Google Scholar 

  • Ädelroth P, Gennis RB and Brzezinski P (1998) Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 37: 2470–2476

    PubMed  Google Scholar 

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS and Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226: 107–112

    PubMed  CAS  Google Scholar 

  • Anderson G, Williams J and Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267: 23674–23682

    PubMed  CAS  Google Scholar 

  • Arata H, Shimizu M and Takamiya K (1992) Purification and properties of trimethylamine-N-oxide reductase from the aerobic photosynthetic bacterium Roseobacter denitrificans. J Biochem 112: 470–475

    PubMed  CAS  Google Scholar 

  • Babcock GT (1999) How oxygen is activated and reduced in respiration. Proc Natl Acad Sci USA 96: 12971–12973

    PubMed  CAS  Google Scholar 

  • Baymann F, Brugna M, Muhlenhoff U and Nitschke W (2001) Daddy, where did (PS)I come from? Biochim Biophys Acta 1507: 291–310

    PubMed  CAS  Google Scholar 

  • Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni M-T and Nitschke W (2003) The redox protein construction kit: Pre-last universal common ancestor evolution of energy-conserving enzymes. Phil Trans Roy Soc Lond B 358: 267–274

    CAS  Google Scholar 

  • Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD and Achenbach LA (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187: 5090–5096

    PubMed  CAS  Google Scholar 

  • Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH and Strynadka NCJ (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nature Struct Biol 10: 681–687

    PubMed  CAS  Google Scholar 

  • Blankenship RE and Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23: 94–97

    PubMed  CAS  Google Scholar 

  • Blasco G, Guigliarelli B, Magalon A, Asso M, Giordano G and Rothery RA (2001) The coordination and function of the redox centers of the membrane bound nitrate reductases. Cell Molec Life Sci 58: 179–193

    PubMed  CAS  Google Scholar 

  • Bonora P, Principi I, Hochkoeppler A, Borghese R and Zannoni D (1998) The respiratory chain of the halophilic anoxygenic purple bacterium Rhodospirillum sodomense. Arch Microbiol 170: 435–441

    PubMed  CAS  Google Scholar 

  • Borisov VB, Liebl U, Rappaport F, Martin JL, Zhang J, Gennis RB, Konstantinov AA and Vos MH (2002) Interactions between heme d and heme b 595 in quinol oxidase bd from Escherichia coli: A photoselection study using femtosecond spectroscopy. Biochemistry 41: 1654–1662

    PubMed  CAS  Google Scholar 

  • Borsetti F, Francia F, Turner RJ and Zannoni D (2007) The thiol: disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189: 851–859

    PubMed  CAS  Google Scholar 

  • Branden G, Gennis RB and Brzezinski P (2006a) Transmembrane proton translocation by cytochrome c oxidase. Biochim Biophys Acta 1757: 1052–1063

    PubMed  Google Scholar 

  • Branden G, Pawate AS, Gennis RB and Brzezinski P (2006b) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103: 317–322

    PubMed  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A and Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 616: 76–81

    Google Scholar 

  • Bratton MR, Pressler MA and Hosier JP (1999) Suicide inactivation of cytochrome c oxidase: Catalytic turnover in the absence of subunit III alters the active site. Biochemistry 38: 16236–16245

    PubMed  CAS  Google Scholar 

  • Bratton MR, Hiser L, Antholine WE, Hoganson C and Hosier JP (2000) Identification of the structural subunits required for formation of the metal centers in subunit I of cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 39: 12989–12995

    PubMed  CAS  Google Scholar 

  • Brochier C and Philippe H (2002) Phylogeny: A non hyperthermophilic ancestor for bacteria. Nature 417: 244

    PubMed  CAS  Google Scholar 

  • Candela M, Zaccherini E and Zannoni D (2001) Respiratory electron transport and light induced energy transduction in membranes from the photosynthetic bacterium Roseobacter denitrificans. Arch Microbiol 175: 169–177

    Google Scholar 

  • Castresana J (2001) Comparative genomics and bioenergetics. Biochim Biophys Acta 1506: 147–162

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2001) Obcells as proto-organisms: Membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cell, and photosynthesis. J Mol Evol 53: 555–595

    PubMed  CAS  Google Scholar 

  • Ciurli S and Musiani F (2005) High potential iron-sulfur proteins and their role as soluble electron carriers in bacterial photosynthesis: Tale of a discovery. Photosynth Res 85: 115–131

    PubMed  CAS  Google Scholar 

  • Cotton NJP, Clark AJ and Jackson JB (1983) Interaction between the respiratory and photosynthetic electron transport chains of intact cells of Rhodopseudomonas capsulata mediated by membrane potential. Eur J Biochem 130: 581–587

    PubMed  CAS  Google Scholar 

  • Cox RL, Patterson C and Donohue T.I (2001) Roles for the Rhodobacter sphaeroides CcmA and CcmG proteins. J Bacteriol 183: 4643–4647

    PubMed  CAS  Google Scholar 

  • Cramer WA and Knaff DB (1990) Energy Transduction in Biological Membranes. A Textbook of Bioenergetics. Springer-Verlag, New York

    Google Scholar 

  • Daldal F, Mandaci S, Winterstein C, Myllykallio H, Duyck K and Zannoni D (2001) Mobile cytochrome c 2 and membrane-anchored cytochrome c y are both efficient electron donors to the cbb 3- and aa 3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183: 2013–2024

    PubMed  CAS  Google Scholar 

  • Danielsson Thorell H, Beyer NH, Heegaard NH, Ohman M and Nilsson T (2004) Comparison of native and recombinant chlorite dismutase from Ideonella dechloratans. Eur J Biochem 271: 3539–3346

    PubMed  Google Scholar 

  • D’Mello R, Hill S and Poole RK (1994) Determination of the oxygen affinities of terminal oxidases in Azotobacter vinelandii using the deoxygenation of oxyleghaemoglobin and oxymyoglobin: Cytochrome bd is a low affinity oxidase. Microbiology 140: 1395–1402

    CAS  Google Scholar 

  • D’Mello R, Hill S and Poole RK (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: Implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142: 755–763

    PubMed  CAS  Google Scholar 

  • Drosou V, Reincke B, Schneider M and Ludwig B (2002) Specificity of the interaction between the Paracoccus denitrificans oxidase and its substrate cytochrome c: Comparing the mitochondrial to the homologous bacterial cytochrome c 552, and its truncated and site-directed mutants. Biochemistry 41: 10629–10634

    PubMed  CAS  Google Scholar 

  • Dueweke TJ and Gennis RB (1991) Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain. Biochemistry 30: 3401–3406

    PubMed  CAS  Google Scholar 

  • Dupuis A, Prieur I and Lunardi J (2001) Toward a characterization of the connecting module of complex I. J Bioenerg Biomembr 33: 159–168

    PubMed  CAS  Google Scholar 

  • Ellis PT, Conrads T, Hille R and Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.6 Å and 2.03 Å. Structure 9: 125–132

    PubMed  CAS  Google Scholar 

  • Ferguson SJ and Richardson DJ (2004) The enzymes and bioenergetics of bacterial nitrate, nitrite, nitric oxide and nitrous oxide respiration. In: Zannoni D (ed) Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory Systems (Advances in Photosynthesis and Respiration, Vol 16), pp 169–206 Springer, Dordrecht

    Google Scholar 

  • Fetter JR, Qian J, Shapleigh J, Thomas JW, Garcia-Horsman A, Schmidt E, Hosier J, Babcock GT, Gennis RB and Ferguson-Miller S (1995) Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci USA 92: 1604–1608

    PubMed  CAS  Google Scholar 

  • Finel M (1996) Genetic inactivation of the H+-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans is facilitated by insertion of the ndh gene fromEscherichia coli. FEBS Lett 393: 81–85

    PubMed  CAS  Google Scholar 

  • Friedrich T and Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479: 1–5

    PubMed  CAS  Google Scholar 

  • García-Horsman JA, Barquera B and Escamilla JE (1991) Two different aa 3-type cytochromes can be purified from the bacterium Bacillus cereus. Eur J Biochem 199: 761–768

    PubMed  Google Scholar 

  • García-Horsman JA, Barquera B, Rumbley J, Ma J and Gennis R (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol. 176: 5587–5600

    PubMed  Google Scholar 

  • Gilderson G, Salomonsson L, Aagaard A, Gray J, Brzezinski P and Hosier J (2003) Subunit III of cytochrome c oxidase of Rhodobacter sphaeroides is required to maintain rapid proton uptake through the D pathway at physiologic pH. Biochemistry 42: 7400–7409

    PubMed  CAS  Google Scholar 

  • Gon S, Giudici-Orticoni MT, Mejean V and Iobbi-Nivol C (2001) Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine-N-oxide reductase of Escherichia coli. J Bacteriol 182: 5779–5786

    Google Scholar 

  • Hanlon SP, Holt RA, Moore GR and McEwan AG (1994) Isolation and characterization of a strain of Rhodobacter sulfidophilus: A bacterium which grows autotrophically with dimethylsulfide as electron donor. Microbiology 140: 1953–1958

    CAS  Google Scholar 

  • Hemp J, Christian C, Barquera B, Gennis RB and Martinez TJ (2005) Helix switching of akey active-site residue in the cytochrome cbb 3 oxidases. Biochemistry 44: 10766–10775

    PubMed  CAS  Google Scholar 

  • Hemp J, Robinson DE, Ganesan KB, Martinez TJ, Kelleher NL and Gennis RB (2006) Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme-copper oxygen reductases. Biochemistry 45: 15405–15410

    PubMed  CAS  Google Scholar 

  • Herter SM, Kortlüle CM and Drews G (1998) Complex I of Rhodobacter capsulatus and its role in reverted electron transport. Arch Microbiol 169: 98–105

    PubMed  CAS  Google Scholar 

  • Hill BC (1994) Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. J Biol Chem 269: 2419–2425

    PubMed  CAS  Google Scholar 

  • Hiser L, Di Valentin M, Hamer AG and Hosier JP (2000) Cox 11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275: 619–623

    PubMed  CAS  Google Scholar 

  • Hochkoeppler A, Ciurli S, Venturoli G and Zannoni D (1995a) The high potential iron-sulphur protein (HiPIP) from Rhodoferax fermentons is competent in photosynthetic electron transfer. FEBS Lett 357: 70–74

    PubMed  CAS  Google Scholar 

  • Hochkoeppler A, Jenney FE, Jr., Lang SE, Zannoni D and Daldal F (1995b) Membrane-associated cytochrome c y of Rhodobacter capsulatus is an electron carrier from the cytochrome bc 1 complex to the cytochrome c oxidase during respiration. J Bacteriol 177: 608–613

    PubMed  CAS  Google Scholar 

  • Hochkoeppler A, Moschettini G and Zannoni D (1995c) The electron transport system of the facultative phototrophic bacterium Rhodoferax fermentans. I. A functional, thermodynamic and spectroscopic study of the membrane bound respiratory chain of dark- and light-grown cells. Biochim Biophys Acta 1229: 73–80

    Google Scholar 

  • Hochkoeppler A, Principi I, Bonora P, Ciurli S and Zannoni D (1999) On the role of soluble redox carriers alternative to cytochrome c 2 as donors to tetraheme-type reaction centers and cytochrome oxidases. In: Peschek GA, Loffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 293–302. Kluwer Academic / Plenum Publishers, New York

    Google Scholar 

  • Holland HD (1994) Early proterozoic atmospheric change. In: Bengtson S (ed) Early Life on Earth, pp 237–244. Columbia University Press, New York

    Google Scholar 

  • Hosler JP (2004) The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism-based inactivation in subunit I. Biochim Biophys Acta 1655: 332–339

    PubMed  CAS  Google Scholar 

  • Hosier JP, Ferguson-Miller S, Calhoun MW, Thomas JW, Hill J, Lemieux L, Ma J, Georgiou C, Fetter J, Shapleigh J, Teklenburg MMJ, Babcock GT and Gennis RB (1993) Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa 3 and cytochrome bo. J Bioenerg Biomembr 25: 121–136

    Google Scholar 

  • Hosier JP, Ferguson-Miller S and Mills DA (2006) Energy transduction: Proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165–187

    Google Scholar 

  • Imhoff JF, Petri R and Suling J (1998) Reclassification of species of the spiral-shaped phototrophic purple non-sufur bacteria of the alpha-Proteobacteria: Description of the new genera Paeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Paeospirillum molischianum com. nov, of Rhodospirillum salinarum to Rhodovibrio salexigens. Int J Syst Bacteriol 48: 793–798

    Article  PubMed  Google Scholar 

  • Iobbi-Nivol C, Pommier J, Simala-Grant J, Mejean V and Giordano G (1996) High substrate specificity and induction characteristics of trimethylamine-N-oxide reductase of Escherichia coli. Biochim Biophys Acta 1294: 157–162

    Google Scholar 

  • Jenney Jr. FE and Daldal F (1993) A novel membrane-associated c-type cytochrome Cyt c y, can mediate the photosynthetic growth of Rhodobacter capsuatus and Rhodobacter sphaeroides. EMBO J 12: 1283–1292

    PubMed  CAS  Google Scholar 

  • Johnson KE and Rajagopalan KV (2001) An active site tyrosine influences the ability of the dimethylsulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. J Biol Chem 276: 13178–13185

    PubMed  CAS  Google Scholar 

  • Jormakka M, Richardson D, Byrne B and Iwata S (2004) Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12: 95–104

    PubMed  CAS  Google Scholar 

  • Junemann S (1997) Cytochrome bd terminal oxidase. Biochim Biophys Acta 1321: 107–127

    PubMed  CAS  Google Scholar 

  • Jungst A, Wakabayashi S, Matsubara H and Zunft WG (1991) The nirSTBM region coding for cytochrome cd 1-dependent nitrite respiration in Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett 279: 205–209

    PubMed  CAS  Google Scholar 

  • Kelly DP and Smith NA (1990) Organic sulphur compounds in the environment-biogeochemistry, microbiology, and ecological aspects. Adv Microb Ecol 11: 345–385

    CAS  Google Scholar 

  • Kloer DP, Hagel C, Heider J and Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14: 1377–1388

    PubMed  CAS  Google Scholar 

  • Kniemeyer O and Heider J (2001) Ethylbenzene dehydrogenase, anovel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276: 21381–21386

    PubMed  CAS  Google Scholar 

  • Koch HG, Hwang O and Daldal F (1998) Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome cbb 3 oxidase activity. J Bacteriol 180: 969–978

    PubMed  CAS  Google Scholar 

  • Krafft T and Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255: 647–653

    PubMed  CAS  Google Scholar 

  • Krafft T, Bokranz M, Klimmer O, Schröder I, Fahrenholz F, Kojro E and Kröger A (1992) Cloning and nucleodide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem 206: 503–510

    PubMed  CAS  Google Scholar 

  • Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett M-C and Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686–693

    PubMed  CAS  Google Scholar 

  • Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F and Nitschke W (2006) The Rieske-protein: A case study on the pitfalls of multiple sequence alignments and phylogenetic reconstruction. Mol Biol Evol 23: 1180–1191

    PubMed  CAS  Google Scholar 

  • Lemon DD, Calhoun MW, Gennis RB and Woodruff WH (1993) The gateway to the active site of heme-copper oxidases. Biochemistry 32: 11953–11956

    PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM and Parker J (1997) Brock. Biology of Microorganisms. 10th Edition. Printice Hall, Upper Saddle River

    Google Scholar 

  • Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J and Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70: 19–41

    PubMed  CAS  Google Scholar 

  • McDevitt CA, Hugenholtz P, Hanson GR and McEwan AG (2002a) Molecular analysis of dimethylsulfide dehydrogenase from Rhodovulum sulfidophilum; its place in the DMSO reductase family of microbial molybdenum-containing enzymes. Mol Microbiol 44: 1576–1587

    Google Scholar 

  • McDevitt CA, Hanson GR, Noble CJ, Cheesman MR and McEwan AG (2002b) Characterization of the redox centers in dimethyl sulfide dehydrogenase from Rhodovulum sulfidophilum. Biochemistry 41: 15234–15244

    PubMed  CAS  Google Scholar 

  • McEwan AG, Cotton NPJ, Ferguson SJ and Jackson JB (1985) The role of auxiliary oxidants in the maintenance of balanced redox poise for photosynthesis in bacteria. Biochim Biophys Acta 810: 140–147

    CAS  Google Scholar 

  • McEwan AG, Ridge JP, McDevitt CA and Hugenholtz P (2002) The DMSO reductase family of microbial molybdenum enzymes; molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol J 19: 3–21

    CAS  Google Scholar 

  • McEwan AG, Kappler U and McDevitt CA (2004) Microbial molybdenum-containing enzymes in respiration: structural and functional aspects. In: Zannoni D (ed) Respiration in Archaea and Bacteria. Diversity of Prokaryotic Electron Transport Carriers (Advances in Photosynthesis and Respiration, Vol 15), pp 175–202. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Meyer TE and Cusanovich MA (1985) Soluble cytochrome composition of the purple phototrophic bacterium Rhodopseudomas sphaeroides ATCC 17023. Biochim Biophys Acta 807: 308–391

    PubMed  CAS  Google Scholar 

  • Meyer TE and Donohue TJ (1995) Cytochromes, iron-sulfur, and copper proteins mediating electron transfer from Cyt bc 1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 725–745. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mills DA, Schmidt B, Hiser C, Westley E and Ferguson-Miller S (2002) Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem. 277: 14894–14901

    PubMed  CAS  Google Scholar 

  • Mills DA and Hosier JP (2005) Slow proton transfer through the pathways for pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. Biochemistry 44: 4656–4666

    PubMed  CAS  Google Scholar 

  • Mills DA, Tan Z, Ferguson-Miller S and Hosler J (2003) A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 42: 7410–7417

    PubMed  CAS  Google Scholar 

  • Mills DA, Geren L, Hiser C, Schmidt B, Durham B, Millett F and Ferguson-Miller S (2005) An arginine to lysine mutation in the vicinity of the heme propionates affects the redox potentials of the hemes and associated electron and proton transfer in cytochrome c oxidase. Biochemistry 44: 10457–10465

    PubMed  CAS  Google Scholar 

  • Mogi T, Akimoto S, Endou S, Watanabe-Nakayama T, Mizuochi-Asai E and Miyoshi H (2006) Probing the ubiquinol-binding site in cytochrome bd by site-directed mutagenesis. Biochemistry 45: 7924–7930

    PubMed  CAS  Google Scholar 

  • Moore MD and Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174: 1505–1514

    PubMed  CAS  Google Scholar 

  • Morgan JE, Verkhovsky MI, Palmer G and Wikström M (2001) Role of the Pr intermediate in the reaction of cytochrome c oxidase with O2. Biochemistry 40: 6882–6892

    PubMed  CAS  Google Scholar 

  • Moschettini G, Bonora P, Zaccherini E, Hochkoeppler A, Principi I and Zannoni D (1999) The primary quinone acceptor and the membrane-bound c-type cytochromes of the halophilic purple nonsulfur bacterium Rhodospirillum salinarum: a spectroscopic and thermodynamic study. Photosynth Research 62: 43–53

    CAS  Google Scholar 

  • Mouncey NJ, Gak E, Choudhary M, Oh J and Kaplan S (2000) Respiratory pathways of Rhodobacter sphaeroides 2.4.1T: Identification and characterization of genes encoding quinol oxidases. FEMS Microbiol Lett 192: 205–210

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT and Silver S (2002) Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol Rev 26: 311–325

    PubMed  CAS  Google Scholar 

  • Muller D, Lièvremont D, Dancheva Simeonova D, Hubert J-C and Lett M-C (2003) Arsenite oxidase aox genes from a metal-resistant !-proteobacterium. J Bacteriol 185: 135–141

    PubMed  CAS  Google Scholar 

  • Namslauer A and Brzezinski P (2004) Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase. FEBS Lett. 567: 103–110

    PubMed  CAS  Google Scholar 

  • Nitschke W, Muhlenhoff U and Liebl U (1997) Evolution. In: Raghavendra A (ed) Photosynthesis: A Comprehensive Treatise, pp 285–304. Cambridge University Press, Cambridge

    Google Scholar 

  • Oh JI (2006) Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb 3 cytochrome c oxidase on its function. J Microbiol 44: 284–292

    PubMed  CAS  Google Scholar 

  • Oh JI and Kaplan S (1999) The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: Structural andfunctional implications for the regulation of spectral complex formation. Biochemistry 38: 2688–2696

    PubMed  CAS  Google Scholar 

  • Oh JI and Kaplan S (2002) Oxygen adaptation. The role of the CcoQ subunit of the cbb 3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 277: 16220–16228

    PubMed  CAS  Google Scholar 

  • Oh JI, Ko IJ and Kaplan S (2004) Reconstitution of the Rhodobacter sphaeroides cbb 3-PrrBA signal transduction pathway in vitro. Biochemistry 43: 7915–7923

    PubMed  CAS  Google Scholar 

  • Ohmoto H (1996) Evidence in pre-2.2 Gapaleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24: 1135–1138

    PubMed  CAS  Google Scholar 

  • Ohmoto H (1997) When did the Earth’s atmosphere become oxic?. Geochemical News 93: 12–29

    Google Scholar 

  • Olson JM (1999) Early evolution in chlorophyll-basedphotosynthesis. Chemtracts 12: 468–482

    CAS  Google Scholar 

  • Oremland RS and Stolz JF (2003) The ecology of Arsenic. Science 300: 939–944

    PubMed  CAS  Google Scholar 

  • Oremland RS and Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends in Microbiology 13: 45–49

    PubMed  CAS  Google Scholar 

  • Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P and Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60: 3011–3019

    PubMed  CAS  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA and Hollibaugh RT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68: 4795–4802

    PubMed  CAS  Google Scholar 

  • Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S and Gomelsky M (2004) Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: Transcriptome flexibility at diverse growth modes. J Bacteriol 186: 4748–4758

    PubMed  CAS  Google Scholar 

  • Pawate AS, Morgan J, Namslauer A, Mills D, Brzezinski P, Ferguson-Miller S and Gennis RB (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41: 13417–13423

    PubMed  CAS  Google Scholar 

  • Pils D and Schmetterer G (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. Strain PCC 6803. FEMS Microbiol Lett 203: 217–222

    PubMed  CAS  Google Scholar 

  • Pitcher RS and Watmough NJ (2004) The bacterial cytochrome cbb 3 oxidases. Biochim Biophys Acta 1655: 388–399

    PubMed  CAS  Google Scholar 

  • Poole RK, Lloyd D and Chance B (1979) The reaction of cytochrome oxidase with oxygen in the fission yeast Schizosac-charomyces pombe 972H-. Studies at subzero temperatures and measurement of apparent oxygen affinity. Biochem J 184: 555–563

    PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R, Thoeny-Meyer L, Appleby CA and Hennecke H (1996) A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178: 1532–1538

    PubMed  CAS  Google Scholar 

  • Proshlyakov DA (2004) UV optical absorption by protein radicals in cytochrome c oxidase. Biochim Biophys Acta 1655: 282–289

    PubMed  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA and Babcock GT (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci USA 95: 8020–8025

    PubMed  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA, DeMaso C, Leykam JF, DeWitt DL and Babcock GT (2000) Oxygen activation and reduction in respiration: Involvement of redox-active tyrosine 244. Science 290: 1588–1591

    PubMed  CAS  Google Scholar 

  • Qin L, Hiser C, Mulichak A, Garavito RM and Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA 103: 16117–16122

    PubMed  CAS  Google Scholar 

  • Rauhamaki V, Baumann M, Soliymani R, Puustinen A and Wikström M (2006) Identification of ahistidine-tyrosine cross-link in the active site of the cbb 3-type cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 103: 16135–16140

    PubMed  CAS  Google Scholar 

  • Reysenbach AL and Shock E (2002) Merging genomes with geochemistry in hydrothermal ecosystems. Science 296: 1077–1082

    PubMed  CAS  Google Scholar 

  • Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146: 551–571

    PubMed  CAS  Google Scholar 

  • Richardson DJ, Bell LC, McEwan AG, Jackson JB and Ferguson SJ (1991) Cytochrome c 2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and acts as electron donor to the reductase in vivo. Correlation with photoinhibition studies. Eur J Biochem 199: 677–683

    PubMed  CAS  Google Scholar 

  • Richaud P, Marrs BL and Verméglio A (1986) Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudomonas capsulata. Biochim Biophys Acta 850: 256–263

    CAS  Google Scholar 

  • Richter OM and Ludwig B (2003) Cytochrome c oxidase-structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147: 47–74

    PubMed  CAS  Google Scholar 

  • Riistama S, Puustinen A, Verkhovsky MI, Morgan JE and Wikström M (2000) Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39: 6365–6372

    PubMed  CAS  Google Scholar 

  • Rott MA, Witthuhn VC, Schike BA, Soranno M, Ali A and Donohue TJ (1993) Genetic evidence for the role of isocytochrome c 2 in photosynthetic growth of Rhodobacter sphaeroides spd mutants. J Bacteriol 175: 358–366

    PubMed  CAS  Google Scholar 

  • Rugolo M and Zannoni D (1983) Oxygen induced inhibition of light dependent uptake of tetraphenylphosphonium ions as a probe of a direct interaction between photosynthetic and respiratory components in cells of Rhodopseudomonas capsulata. Biochem Biophys Res Commun 113: 155–162

    PubMed  CAS  Google Scholar 

  • Ruitenberg M, Kannt A, Bamberg E, Ludwig B, Michel H and Fendler K (2000) Single-electron reduction of the oxidized state is coupled to proton uptake via the K pathway in Paracoccus denitrificans cytochrome c oxidase. Proc Natl Acad Sci USA 97: 4632–4636

    PubMed  CAS  Google Scholar 

  • Sabaty M, Gans P and Verméglio A (1993) Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 159: 153–159

    CAS  Google Scholar 

  • Sabaty M, Jappé J, Olive J and Verméglio A (1994) Organization of electron transfer components in Rhodobacter sphaeroides forma sp. denitrificans. Biochim Biophys Acta 1187: 313–323

    CAS  Google Scholar 

  • Sabaty M, Avazéri C, Pignol D and Verméglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67: 5122–5126

    PubMed  CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Santini JM and vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186: 1614–1619

    PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD and Macy JM (2000) A new chemolithoautotropic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. App Env Microbiol 66: 92–97

    CAS  Google Scholar 

  • Santini JM, Kappler U, Ward SA, Honeychurch MJ, van den Hoven RN and Bernhard PV (2007) The NT-26 cytochrome c552 and its role in arsenite oxidation. Biochim Biophys Acta 1767: 189–196

    PubMed  CAS  Google Scholar 

  • Sazanov LA and Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430–1436

    PubMed  CAS  Google Scholar 

  • Shapleigh J, Hosier JP, Tecklenburg MJ, Ferguson-Miller S, Babcock GT and Gennis RB (1992) Identification of the heme axial ligands for the cytochrome a component of cytochrome c oxidase. Proc Natl Acad Sci USA 89: 4786–4790

    PubMed  CAS  Google Scholar 

  • Sharma V, Puustinen A, Wikström M and Laakkonen L (2006) Sequence analysis of the cbb 3 oxidases and an atomic model for the Rhodobacter sphaeroides enzyme. Biochemistry 45: 5754–5765

    PubMed  CAS  Google Scholar 

  • Sharpe M, Qin L and Ferguson-Miller S (2005) Proton entry, exit and pathways in cytochrome oxidase: Insight from ‘conserved’ water. In: Wikström M (ed) Biophysical and Structural Aspects of Bioenergetics, pp 26–54. RSC Publishing, Cambridge

    Google Scholar 

  • Shaw AL, Hanson GR and McEwan AG (1996) Cloning and sequence analysis of the dimethylsulfoxide reductase structural gene from Rhodobacter capsulatus. Biochim Biophys Acta 1276: 176–180

    PubMed  Google Scholar 

  • Shaw AL, Hochkoeppler A, Bonora P, Zannoni D, Hanson GR and McEwan AG (1999a) Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethylsulfoxide reductase. J Biol Chem 274: 9911–9914

    PubMed  CAS  Google Scholar 

  • Shaw AL, Leimkuehler S, Klipp W, Hanson GR and McEwan AG (1999b) Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus. Microbiol 145: 1409–1420

    CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ and Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416: 73–76

    PubMed  CAS  Google Scholar 

  • Schröder I, Rech S, Krafft T and Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272: 23765–23768

    PubMed  Google Scholar 

  • Smith D, Gray J, Mitchell L, Antholine WE and Hosler JP (2005) Assembly of cytochrome c oxidase in the absence of assembly protein Surf lp leads to loss of the active site heme. J Biol Chem 280: 17652–17656

    PubMed  CAS  Google Scholar 

  • Stiburek L, Vesela K, Hansikova H, Pecina P, Tesarova M, Cerna L, Houstek J and Zeman J (2005) Tissue-specific cytochrome c oxidase assembly defects due to mutations in Sco2 and Surf1. Biochem J 392: 625–632

    PubMed  CAS  Google Scholar 

  • Stolz JF and Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23: 615–627

    PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM and Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60: 107–130

    PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P and Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339

    PubMed  CAS  Google Scholar 

  • Swem LR, Gong X, Yu CA and Bauer CE (2006) Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 281: 6768–6775

    PubMed  CAS  Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzeli J, Stolz JF and Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171: 19–30

    PubMed  CAS  Google Scholar 

  • Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium Erythrobacter species OCh114. Biochim Biophys Acta 890: 127–133

    CAS  Google Scholar 

  • Taylor BF and Kiene RP (1989) Microbial-metabolism of dimethylsulfide. ACS Symposium Series 393: 202–221

    Article  CAS  Google Scholar 

  • Thöny-Mayer L (1997) Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61: 337–376

    Google Scholar 

  • Toledo-Cuevas M, Barquera B, Gennis RB, Wikström M and García-Horsman JA (1998) The cbb 3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Biochim Biophys Acta 1365: 421–434

    PubMed  CAS  Google Scholar 

  • Tomson FL, Morgan JE, Gu G, Barquera B, Vygodina TV and Gennis RB (2003) Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel. Biochemistry 42: 1711–1717

    PubMed  CAS  Google Scholar 

  • Towe KM (1990) Aerobic respiration in the Archaean? Nature 348: 54–56

    PubMed  CAS  Google Scholar 

  • Towe KM (1994) Earth’s early atmosphere: Constraints and opportunities for early evolution. In: Bengston S (ed) Early Life on Earth, pp. 36–47. Columbia University Press, New York

    Google Scholar 

  • Towe KM (1996) Environmental oxygen conditions during the origina and early evolution of life. Adv Space Res 18: 7–15

    CAS  Google Scholar 

  • Trieber CA, Rothery RA and Weiner JH (1996) Engineering a novel iron-sulfur cluster into the catalytic subunit of Escherichia coli dimethyl-sulfoxide reductase. J Biol Chem 271: 4620–4626

    PubMed  CAS  Google Scholar 

  • Unemoto T and Hayashi M (1993) Na+-translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25: 385–391

    PubMed  CAS  Google Scholar 

  • vanden Hoven RN and Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656: 148–155

    Google Scholar 

  • Varanasi L, Mills D, Murphree A, Gray J, Purser C, Baker R and Hosier J (2006) Altering conserved lipid binding sites in cytochrome c oxidase of Rhodobacter sphaeroides perturbs the interaction between subunits I and III and promotes suicide inactivation of the enzyme. Biochemistry 45: 14896–14907

    PubMed  CAS  Google Scholar 

  • Verméglio A (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas sphaeroides: out-of-phase periodicity of two for the formation of ubisemiquinone and fully reduced ubiquinone. Biochim Biophys Acta 459: 516–524

    PubMed  Google Scholar 

  • Visscher PT, Taylor BF and Kiene RP (1995) Microbial consumption of dimethyl sulfide and methanediol in coastal marine-sediments. FEMS Microbiol Ecol 18: 145–153

    CAS  Google Scholar 

  • Visscher PT and Taylor BF (1993) Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl Environ Microbiol 59: 93–96

    PubMed  CAS  Google Scholar 

  • Wang K, Zhen Y, Sadoski R, Grinnell S, Geren L, Ferguson-Miller S, Durham B and Millett F (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants. J Biol Chem 274: 38042–38050

    PubMed  CAS  Google Scholar 

  • Watts CA, Ridley H, Condie KL, Leaver JT, Richardson DJ and Butler CS (2003) Selenate reduction by Enterobacter cloacae SDL 1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228: 273–279

    PubMed  CAS  Google Scholar 

  • Watts CA, Ridley H, Dridge EJ, Leaver JT, Reilly AJ, Richardson DJ and Butler CS (2005) Microbial reduction of selenate and nitrate: common themes and variations. Biochem Soc Trans 33: 173–175

    PubMed  CAS  Google Scholar 

  • Wikström M (2004) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta 1655: 241–247

    PubMed  Google Scholar 

  • Wood PM (1981) The redox potential of dimethylsulfoxide reduction to dimethylsulfide-evaluation and biochemical implications. FEBS Lett 124: 11–14

    PubMed  CAS  Google Scholar 

  • Wraight CA, Cogdell RJ and Chance B (1978) Ion transport and electrochemical gradients in photosynthetic bacteria. In: Clayton RK and Sistrom RW (eds) The Photosynthetic Bacteria, pp 471–502. Plenum Press, New York

    Google Scholar 

  • Xiong J and Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503–521

    PubMed  CAS  Google Scholar 

  • Xu X and Yagi T (2001) Identification of the NADH binding subunit of energy transducing NADH-quinone oxidoreductase (NDH-1) of Thermus thermophilus HB-8. Biochem Biophys Res Commun 174: 667–672

    Google Scholar 

  • Xu X, Matsuno-Yagi A and Yagi T (1991a) Characterization of the 25-kilodalton subunit of the energy transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: Sequence similarity to the 24-kilodalton subunit of the flavoprotein fraction of mammalian complex I. Biochemistry 30: 8678–8684

    PubMed  CAS  Google Scholar 

  • Xu X, Matsuno-Yagi A and Yagi T (1991b) The NADH-binding subunit of the energy transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans: Gene cloning and deduced primary structure. Biochemistry 30: 6422–6428

    PubMed  CAS  Google Scholar 

  • Xu X, Matsuno-Yagi A and Yagi T (1992a) Gene cluster of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans: Characterization of four structural gene products. Biochemistry 31: 6925–6932

    PubMed  CAS  Google Scholar 

  • Xu X, Matsuno-Yagi A and Yagi T (1992b) Structural features of the 66 kilodalton subunit of the energy transducing NADH-ubiquinone oxidoreductase (NDH-1) of Paracoccus denitrificans. Arch Biochem Biophys 296: 40–48

    PubMed  CAS  Google Scholar 

  • Xu X, Matsuno-Yagi A and Yagi T (1993) DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Arch Biochem Biophys 250: 302–311

    Google Scholar 

  • Yagi T (1993) The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta 1141: 1–17

    PubMed  CAS  Google Scholar 

  • Yagi T and Matsuno-Yagi A (2003) The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: The secret unlocked. Biochemistry 42: 2266–2274

    PubMed  CAS  Google Scholar 

  • Yagi T, Seo BB, Di Bernardo S, Nakamaru-Ogiso E, Kao MC and Matsuno-Yagi A (2001) NADH dehydrogenases: From basic science to biomedicine. J Bioenerg Biomembr 33: 233–242

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K,Nakashima R, Yaono R,Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T and Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280: 1723–1729

    PubMed  CAS  Google Scholar 

  • Yun CH, Beci R, Crofts AR, Kaplan S and Gennis RB (1990) Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc 1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. Eur J Biochem 194: 399–411

    PubMed  CAS  Google Scholar 

  • Zannoni D (1995) Aerobic and anaerobic electron transport chains in anoxygenic phototrophic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 449–971. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zannoni D and Ingledew JW (1985) A thermodynamic analysis of the plasma membrane electron transport components in phototrophically grown cells of Chloroflexus aurantiacus: An optical and electron paramagnetic resonance study. FEBS Letters 193: 93–98

    CAS  Google Scholar 

  • Zannoni D and Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Letters 271: 123–127

    PubMed  CAS  Google Scholar 

  • Zannoni D, Jasper P and Marrs BL (1978) Light induced oxygen uptake as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata Arch Biochem Biophys 191: 625–631

    PubMed  CAS  Google Scholar 

  • Zannoni D, Peterson S and Marrs BL (1986) Recovery of the alternative oxidase dependent electron flow by fusion of membrane vesicles from Rhodobacter capsulatus mutant strains. Arch Microbiol 144: 375–380

    CAS  Google Scholar 

  • Zeller T, Moskvin OV, Li K, Klug G and Gomelsky M (2005) Transcriptome and physiological responses to hydrogen peroxide of the facultatively photo trophic bacterium Rhodobacter sphaeroides. J Bacteriol 187: 7232–7242

    PubMed  CAS  Google Scholar 

  • Zhang J, Barquera B and Gennis RB (2004) Gene fusions with beta-lactamase show that subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O2 reactive site near the periplasmic surface. FEBS Lett 561: 58–62

    PubMed  CAS  Google Scholar 

  • Zufferey R, Preisig O, Hennecke H and Thöny-Meyer L (1996) Assembly and function of the cytochrome cbb 3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem 271: 9114–9119

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zannoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Zannoni, D., Schoepp-Cothenet, B., Hosler, J. (2009). Respiration and Respiratory Complexes. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_27

Download citation

Publish with us

Policies and ethics