Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems

  • Wesley D. Swingley
  • Robert E. Blankenship
  • Jason Raymond
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)


The purple bacteria occupy a unique position among photosynthetic bacteria. Nested within the various proteobacterial lineages, the origin and evolution of purple bacterial photosynthesis has been the topic of innumerable debates. Attempts to reconstruct the evolutionary history of individual photosynthetic protein families have further fueled debate over lateral vs. vertical transfer of genetic elements. In this era of high-throughput sequencing we can begin to distance ourselves from this dependency on single-gene and single-protein phylogenies. Here we present automated comparative genomics-based methods useful for reconstructing the genomic history of not only the purple bacterial lineage, but the proteobacterial lineage as a whole. These reconstructions integrate phylogenetic data inferred from 200 to more than 1000 protein families common to all or part of the proteobacterial lineage. This framework allows us to reconstruct the evolutionary history of each proteobacterial class and parse out the finer relationships among photosynthetic species. By telescoping inward on protein families of interest, we can delve deeper than ever before into the convoluted evolutionary origin of the primary photosynthetic traits, phototrophy and autotrophy. While these full-genome comparisons clarify the nature of many poorly understood phylogenetic relationships, they do not yet serve to resolve the entire mystery surrounding the history of proteobacterial phototrophy.


Purple Bacterium Rhodobacter Sphaeroides Rhodopseudomonas Palustris Aerobic Anoxygenic Phototroph Aerobic Anoxygenic Phototrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aerobic anoxygenic phototrophs




Global Ocean Survey




photosynthesis gene cluster


ribulose 1,5-bisphosphate carboxylase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashida H, Danchin A and Yokota A (2005) Was photo synthetic rubisco recruited by acquisitive evolution from rubisco-like proteins involved in sulfur metabolism? Res Microbiol 156: 611–618PubMedCrossRefGoogle Scholar
  2. Bauer CE, Elsen S, Swem LR, Swem DL and Masuda S (2003) Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos Trans R Soc Lond B Biol Sci 358: 147–154PubMedCrossRefGoogle Scholar
  3. Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73: 109–114PubMedCrossRefGoogle Scholar
  4. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289: 1902–1906PubMedCrossRefGoogle Scholar
  5. Bryant DA, Garcia Costas AM, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Talion LJ, Hostetler J, Nelson WC, Heidelberg JF and Ward DM (2007) Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic acidobacterium. Science 317: 523–526PubMedCrossRefGoogle Scholar
  6. Buchan A, Gonzalez J and Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71: 5665–5677PubMedCrossRefGoogle Scholar
  7. Choudhary M, Zanhua X, Fu YX and Kaplan S (2007) Genome analyses of three strains of Rhodobacter sphaeroides: Evidence of rapid evolution of chromosome II. J Bacteriol 189: 1914–1921PubMedCrossRefGoogle Scholar
  8. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, Fitzhugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO and Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512PubMedCrossRefGoogle Scholar
  9. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glockner FO and Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104: 2891–2896PubMedCrossRefGoogle Scholar
  10. Gadagkar SR, Rosenberg MS and Kumar S (2005) Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J Exp Zoolog B Mol Dev Evol 304B: 64–74CrossRefGoogle Scholar
  11. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre J-C, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang W-S, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Medigue C and Sadowsky M (2007) Legumes symbioses: Absence of nod genes in photosynthetic Bradyrhizobia. Science 316: 1307–1312PubMedCrossRefGoogle Scholar
  12. Hanson TE and Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402PubMedCrossRefGoogle Scholar
  13. Harashima K, Nakagawa M and Murata N (1982) Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (Och 114) and Erythrobacter longus (Och 101). Plant Cell Physiol 23: 185–193Google Scholar
  14. Hiraishi A and Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180PubMedCrossRefGoogle Scholar
  15. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K and Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52: 333–341PubMedGoogle Scholar
  16. Imhoff JF, Hiraishi A and Suling J (2005) Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR and Staley JT (eds) Bergey’s Manual of Systematic Bacteriology, pp 119–132. Springer, New YorkCrossRefGoogle Scholar
  17. Imhoff JF and Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165: 106–113PubMedCrossRefGoogle Scholar
  18. Imker HJ, Fedorov AA, Fedorov EV, Almo SC and Gerlt JA (2007) Mechanistic diversity in the rubisco superfamily:The ‘enolase’ in the methionine salvage pathway in Geobacillus kaustophilus. Biochemistry 46: 4077–4089PubMedCrossRefGoogle Scholar
  19. Jacob F and Monod J (1961) On regulation of gene activity. Cold Spring Harb Symp Quant Biol 26: 193Google Scholar
  20. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M and Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189–197PubMedCrossRefGoogle Scholar
  21. Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Mol Biol Rev 52: 50–69Google Scholar
  22. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C and Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495PubMedCrossRefGoogle Scholar
  23. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres J, Peres C, Harrison FH, Gibson J and Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22: 55–61PubMedCrossRefGoogle Scholar
  24. Lawrence JG (2003) Gene organization: Selection, selfishness, and serendipity. Annu Rev Microbiol 57: 419–440PubMedCrossRefGoogle Scholar
  25. Lawrence JG and Roth JR (1996) Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843–1860PubMedGoogle Scholar
  26. Mackenzie C, Choudhary M, Larimer F, Predki P, Stilwagen S, Armitage J, Barber R, Donohue T, Hosier J, Newman J, Shapleigh J, Sockett R, Zeilstra-Ryalls J and Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70: 19–41PubMedCrossRefGoogle Scholar
  27. Nagashima KVP, Shimada K and Matsuura K (1993) Phylogenetic analysis of photosynthetic genes of Rhodocyclus gelatinosus — possibility of horizontal gene-transfer in purple bacteria. Photosynth Res 36: 185–191CrossRefGoogle Scholar
  28. Nagashima KVP, Hiraishi A, Shimada K and Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136PubMedCrossRefGoogle Scholar
  29. Nakatsu CH, Hristova K, Hanada S, Meng X-Y, Hanson JR, Scow KM and KamagataY (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56: 983–989PubMedCrossRefGoogle Scholar
  30. Pal C and Hurst LD (2004) Evidence against the selfish operon theory. Trends Genet 20: 232–234PubMedCrossRefGoogle Scholar
  31. Price MN, Huang KH, Arkin AP and Alm EJ (2005) Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 15: 809–819PubMedCrossRefGoogle Scholar
  32. Shiba T and Harashima K (1986) Aerobic photosynthetic bacteria. Microbiol Sci 3: 376–378PubMedGoogle Scholar
  33. Shiba T, Simidu U and Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45PubMedGoogle Scholar
  34. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT and Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189: 683–690PubMedCrossRefGoogle Scholar
  35. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective. Photosynth Res 60: 1–28CrossRefGoogle Scholar
  36. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J and Chan S (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71: 576–599PubMedCrossRefGoogle Scholar
  37. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H and Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74PubMedCrossRefGoogle Scholar
  38. Watson GMF and Tabita FR (1997) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146: 13–22PubMedCrossRefGoogle Scholar
  39. Wellington CL and Beatty JT (1991) Overlapping mRNA transcripts of photosynthesis gene operons in Rhodobacter capsulatus. J Bacteriol 173: 1432–1443PubMedGoogle Scholar
  40. Willems A, Munive A, de Lajudie P and Gillis M (2003) In most Bradyrhizobium groups sequence comparison of 16S–23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26: 203–210PubMedCrossRefGoogle Scholar
  41. Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856PubMedCrossRefGoogle Scholar
  42. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia J-M, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, Strausberg RL, Frazier M and Venter JC (2007) The Sorcerer II Global Ocean Sampling expedition: Expanding the universe of protein families. PLoS Biol 5: e16PubMedCrossRefGoogle Scholar
  43. Yurkov V and van Gemerden H (1993) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159: 84–89CrossRefGoogle Scholar
  44. Yurkov VV and Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62: 695–724PubMedGoogle Scholar
  45. Yurkov VV and Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metal reducers from extreme environments. In: Pandalai SG (ed) Recent Research Developments in Bacteriology, pp 247–300. Transworld Research Network, Trivandrum, IndiaGoogle Scholar
  46. Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB and Béjà O (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9: 1464–1475PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Wesley D. Swingley
    • 1
  • Robert E. Blankenship
    • 2
  • Jason Raymond
    • 3
  1. 1.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  2. 2.Departments of Biology and ChemistryWashington University in St. LouisSt. LouisUSA
  3. 3.School of Natural SciencesUniversity of California-MercedMercedUSA

Personalised recommendations