Skip to main content

Mechanism of Charge Separation in Purple Bacterial Reaction Centers

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

This chapter discusses the pathway, kinetics and energetics of the initial electron-transfer steps in reaction centers (RCs) from purple photosynthetic bacteria. We consider the unusual dependence of the kinetics on temperature, the strong specificity of the reactions for electron acceptors on the ‘A’ side of the RC, effects of vibrational wavepackets, the multiphasic nature of the kinetics, effects of mutations and pigment substitutions, and links between the kinetics of electron transfer and vibrational equilibration. We then discuss some of the theories that have been used to rationalize the dynamics and temperature dependence of the electron-transfer reactions, including Marcus theory, coupling to quantized vibrational modes and density-matrix treatments. Our discussion illustrates the power of microscopic simulations for connecting structural information with mechanistic interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BA, BB :

monomeric BChls that serve as electron acceptors in the RC

BChl:

bacteriochlorophyll

BPhe:

bacteriopheophytin

HA, HB :

BPhes that serve as electron acceptors

MD:

molecular dynamics

P:

the special pair of BChls that acts as the primary electron donor

Pheo:

pheophytin

RC:

reaction center

UV:

ultra-violet

References

  • Alden RG, Parson WW, Chu ZT and Warshel A (1995) Calculations of electrostatic energies in photosynthetic reaction centers. J Am Chem Soc 117: 12284–12298

    CAS  Google Scholar 

  • Alden RG, Parson WW, Chu ZT and Warshel A (1996a) Macroscopic and microscopic estimates of the energetics of charge separation in bacterial reaction centers. In: Michel-Beyerle ME (ed) Reaction Centers of Photosynthetic Bacteria: Structure and Dynamics, pp 105–116. Springer-Verlag, Berlin

    Google Scholar 

  • Alden RG, Parson WW, Chu ZT and Warshel A (1996b) Orientation of the OH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers. J Phys Chem 100: 16761–16770

    CAS  Google Scholar 

  • Ando K and Sumi H (2003) Path-integral Monte Carlo calculation of reaction-diffusion equation. J Chem Phys 118: 8315–8320

    CAS  Google Scholar 

  • Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H and Zinth W (1993) The accessory bacteriochlorophyll: A real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90: 11757–11762

    PubMed  CAS  Google Scholar 

  • Arlt T, Bibikova M, Penzkofer H, Oesterhelt D and Zinth W (1996a) Strong acceleration of primary photosynthetic electron transfer in a mutated reaction center of Rhodopseudomonas viridis. J Phys Chem 100: 12060–12065

    CAS  Google Scholar 

  • Arlt T, Dohse B, Schmidt S, Wachtveitl J, Laussermaier E, Zinth W and Oesterhelt D (1996b) Electron transfer dynamics of Rhodopseudomonas viridis reaction centers with a modified binding site for the accessory bacteriochlorophyll. Biochemistry 35: 9235–9244

    PubMed  CAS  Google Scholar 

  • Bader JS, Kuharski RA and Chandler D (1990) Role of nuclear tunneling in aqueous ferrous-ferric electron transfer. J Chem Phys 93: 230–236

    CAS  Google Scholar 

  • Becker M, Nagarajan V, Middendorf D, Parson WW, Martin JE and Blankenship RE (1991) Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1057: 299–312

    CAS  Google Scholar 

  • Beekman LMP, van Stokkum IHM, Monshouwer R, Rijnders AJ, McGlynn P, Visschers RW, Jones MR and van Grondelle R (1996) Primary electron transfer in membrane-bound reaction centers with mutations at the M210 position. J Phys Chem 100: 7256–7268

    CAS  Google Scholar 

  • Bixon M and Jortner J (1968) Intramolecular radiationless transitions. J Chem Phys 48: 715–726

    CAS  Google Scholar 

  • Bixon M and Jortner J (1986) Coupling of protein modes to electron transfer in bacterial photosynthesis. J Phys Chem 90: 3795–3800

    CAS  Google Scholar 

  • Bixon M and Jortner J (1999) Electron transfer. From isolated molecules to biomolecules. Adv Chem Phys 106: 35–202

    CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1995) A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem Phys 197: 389–404

    CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1996) Energetics of the primary charge separation in bacterial photosynthesis. In: Michel-Beyerle ME (ed) The Reaction Center of Photosynthetic Bacteria: Structure and Dynamics, pp 287–296. Springer-Verlag, Berlin

    Google Scholar 

  • Blankenship RE, Schaafsma TJ and Parson WW (1977) Magnetic field effects on radical-pair intermediates in bacterial photosynthesis. Biochim Biophys Acta 461: 297–305

    PubMed  CAS  Google Scholar 

  • Blomberg MRA, Siegbahn PHM and Babcock GT (1998) Modeling electron transfer in biochemistry: A quantum chemical study of charge separation in Rhodobacter sphaeroides and photosystem II. J Am Chem Soc 120: 8812–8824

    CAS  Google Scholar 

  • Blum K (1996) Density Matrix Theory and Applications. Plenum Press, New York

    Google Scholar 

  • Boxer SG, Chidsey ED and Roelofs MG (1983) Magnetic field effects on reaction yields in the solid state: An example from photosynthetic reaction centers. Ann Rev Phys Chem 34: 389–417

    CAS  Google Scholar 

  • Boxer SG, Goldstein RA, Lockhart DJ, Middendorf TR and Takiff L (1989) Excited states, electron-transfer reactions, and intermediates in bacterial photosynthetic reaction centers. J Phys Chem 93: 8280–8294

    CAS  Google Scholar 

  • Breton J, Martin J-L, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation electron transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci USA 83: 5121–5175

    PubMed  CAS  Google Scholar 

  • Breton J, Martin J-L, Fleming GR and Lambry J-C (1988) Low temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria. Biochemistry 27: 8276–8284

    CAS  Google Scholar 

  • Bylina EJ, Kirmaier C, McDowell L, Holten D and Youvan DC (1988) Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature 336: 182–184

    CAS  Google Scholar 

  • Ceccarelli M and Marchi M (2003) Simulation and modeling of the Rhodobacter sphaeroides bacterial reaction center II: Primary charge separation. J Phys Chem B 107: 5630–5641

    CAS  Google Scholar 

  • Chan CK, DiMagno TJ, Chen LXQ, Norris JR and Fleming GR (1991a) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88: 11202–11206

    PubMed  CAS  Google Scholar 

  • Chan CK, Chen LXQ, Dimagno TJ, Hanson DK, Nance SL, Schiffer M, Norris JR and Fleming GR (1991b) Mechanism of the initial charge separation in photosynthetic bacterial reaction centers. Chem Phys Lett 176: 366–372

    CAS  Google Scholar 

  • Chidsey CED, Takiff L, Goldstein RA and Boxer SG (1985) Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair. Proc Natl Acad Sci USA 82: 6850–6854

    PubMed  CAS  Google Scholar 

  • Chuang JI, Boxer SG, Holten D and Kirmaier C (2006) High yield of M-side electron transfer in mutants of Rhodobacter capsulatus reaction centers lacking the L-side bacteriopheophytin. Biochemistry 45: 3845–3851

    PubMed  CAS  Google Scholar 

  • Churg AK and Warshel A (1985) Modeling the activation energy and dynamics of electron transfer reactions in proteins. In: Clementi E, Corongiu G, Sarma MH and Sarma RH (ed) Structure and Motion: Membranes, Nucleic Acids and Proteins, pp 361. Adenine Press, Guilderland, NY

    Google Scholar 

  • Creighton S, Hwang J-K, Warshel A, Parson WW and Norris J (1988) Simulating the dynamics of the primary charge separation process in bacterial photosynthesis. Biochemistry 27: 774–781

    CAS  Google Scholar 

  • Czarnecki K, Chynwat V, Erickson JP, Frank HA and Bocian DF (1997) Characterization of the strongly coupled, low-frequency vibrational modes of the special pair of photosynthetic reaction centers via isotopic labeling of the cofactors. J Am Chem Soc 119: 415–426

    CAS  Google Scholar 

  • Czarnecki K, Kirmaier C, Holten D and Bocian DF (1999) Vibrational and photochemical consequences of an Asp residue near the photoactive accessory bacteriochlorophyll in the photosynthetic reaction center. J Phys Chem A 103: 2235–2246

    CAS  Google Scholar 

  • Davidson ER (1976) Reduced Density Matrices in Quantum Chemistry. Academic Press, London

    Google Scholar 

  • de Boer AL, Neerken S, de Wijn R, Permentier HP, Gast P, Vijgenboom E and Hoff AJ (2002a) High yield of B-branch electron transfer in a quadruple reaction center mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry 41: 3081–3088

    PubMed  Google Scholar 

  • de Boer AL, Neerken S, de Wijn R, Permentier HP, Gast P, Vijgenboom E and Hoff AJ (2002b) B-branch electron transfer in reaction centers of Rhodobacter sphaeroides assessed with site-directed mutagenesis. Photosynth Res 71: 221–239

    PubMed  Google Scholar 

  • Du M, Rosenthal SJ, Xie X, DiMagno TJ, Schmidt M, Hanson DK, Schiffer M, Norris JR and Fleming GR (1992) Femtosecond spontaneous emission studies of reaction centers from photosynthetic bacteria. Proc Natl Acad Sci USA: 8517–8521

    Google Scholar 

  • Egger R and Mak CH (1994) Dissipative three-state system and the primary electron transfer in the bacterial photosynthetic reaction center. J Phys Chem 98: 9903–9918

    CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65Å resolution: Cofactors and protein-cofactor interactions. Structure 2: 925–936

    PubMed  CAS  Google Scholar 

  • Figueirido F, Del Buono GS and Levy RM (1997) On the finite size corrections to the free energy of ionic hydration. J Phys Chem B 101: 5622–5623

    CAS  Google Scholar 

  • Finkele U, Lauterwasser C, Zinth W, Gray KA and Oesterhelt D (1990) Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides. Biochemistry 29: 8517–8521

    PubMed  CAS  Google Scholar 

  • Fleming GR, Martin J-L and Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centers and their mechanistic implications. Nature 333: 190–192

    CAS  Google Scholar 

  • Garg A, Onuchic JN and Ambegaokar B (1985) Effect of friction on electron transfer in macromolecules. J Chem Phys 83: 4491–4503

    CAS  Google Scholar 

  • Gehlen JN, Marchi M and Chandler D (1994) Dynamics affecting the primary charge-transfer in photosynthesis. Science 263: 499–502

    PubMed  CAS  Google Scholar 

  • Gilson MK, Rashin A, Fine R and Honig B (1985) On the calculation of electrostatic interactions in proteins. J Mol Biol 184: 503–516

    PubMed  CAS  Google Scholar 

  • Godik VI and Borisov AY (1979) Short-lived delayed luminescence of photosynthetic organisms. I. Nanosecond afterglows in purple bacteria at low temperatures. Biochim Biophys Acta 548: 296–308

    PubMed  CAS  Google Scholar 

  • Godik VI, Kotova EA and Borisov AY (1982) Nanosecond recombination luminescence of purple bacteria. The lifetime temperature dependence in Rhodospirillum rubrum chromatophores. Photobiochem Photobiophys 4: 219–226

    Google Scholar 

  • Goldstein RA and Boxer SG (1988) The effect of very high magnetic fields on the reaction dynamics in bacterial reaction centers: Implications for the reaction mechanism. Biochim Biophys Acta 977: 70–77

    Google Scholar 

  • Gray HB and Winkler JR (1996) Electron transfer in proteins. Ann Rev Biochem 65: 537–561

    PubMed  CAS  Google Scholar 

  • Gunner MR and Dutton PL (1989) Temperature and -ΔG° dependence of the electron transfer from BPh•- to QA in reaction center protein from Rhodobacter sphaeroides with different quinones as QA. J Am Chem Soc 111: 3400–3412

    CAS  Google Scholar 

  • Gunner M, Nichols A and Honig B (1996) Electrostatic potentials in Rhodopseudomonas viridis reaction centers: Implications for the driving force and directionality of electron transfer. J Phys Chem 100: 4277–4291

    CAS  Google Scholar 

  • Haberkorn R and Michel-Beyerle ME (1979) On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys J 26: 489–498

    PubMed  CAS  Google Scholar 

  • Haifa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP and Woodbury NW (2002) The dependence of the initial electron-transfer rate on driving force in Rhodobacter sphaeroides reaction centers. J Phys Chem B 106: 7376–7384

    Google Scholar 

  • Haffa ALM, Lin S, Williams JC, Bowen BP, Taguchi AKW, Allen JP and Woodbury NW (2004) Controlling the pathway of photosynthetic charge separation in bacterial reaction centers. J Phys Chem B 108: 4–7

    CAS  Google Scholar 

  • Hamm P and Zinth W (1995) Ultrafast initial reaction in bacterial photosynthesis revealedby femtosecond infrared spectroscopy. J Phys Chem 99: 13537–13544

    CAS  Google Scholar 

  • Hamm P, Gray KA, Oesterhelt D, Feik R, Scheer H and Zinth W (1993) Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta 1142: 90–105

    Google Scholar 

  • Hartwich G, Lossau H, Michel-Beyerle ME and Ogrodnik A (1998) Nonexponential fluorescence decay in reaction centers of Rhodobacter sphaeroides reflecting dispersive charge separation up to 1 ns. J Phys Chem B 102: 3815–3820

    CAS  Google Scholar 

  • Hasegawa J and Nakatsuji H (1998) Mechanism and unidirectionality of the electron transfer in the photosynthetic reaction center of Rhodopseudomonas viridis: SAC-CI theoretical study. J Phys Chem B 102: 10420–10430

    CAS  Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1995) Control of electron transfer between the L- and M-sides of the photosynthetic reaction center. Science 269: 940–945

    PubMed  CAS  Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1996) Effects of Asp residues near the L-side pigments in bacterial reaction centers. Biochemistry 35: 15418–15427

    PubMed  CAS  Google Scholar 

  • Hoff AJ (1981) Magnetic field effects on photosynthetic reaction centers. Quart Rev Biophys 14: 599–665

    CAS  Google Scholar 

  • Holten D, Windsor MW, Parson WW and Thornber JP (1978) Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 501: 112–126

    PubMed  CAS  Google Scholar 

  • Holten D, Hoganson C, Windsor MW, Schenck GC, Parson WW, Migus A, Fork RL and Shank CV (1980) Subpicosecond and picosecond studies of electron transfer intermediates in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta 592: 461–477

    PubMed  CAS  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160: 1–7

    CAS  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1990) Initial electron transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 5168–5172

    PubMed  CAS  Google Scholar 

  • Holzwarth AR and Muller MG (1996) Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry 35: 11820–11831

    PubMed  CAS  Google Scholar 

  • Hunenberger PH, Mark AE and van Gunsteren WF (1995) Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol 252: 492–503

    PubMed  CAS  Google Scholar 

  • Huppman P, Arlt T, Penzkofer H, Schmidt S, Bibikova M, Dohse B, Oesterhelt D, Wachtveit J and Zinth W (2002) Kinetics, energetics, and electronic coupling of the primary electron transfer reactions in mutated reaction centers of Blastochloris viridis. Biophys J 82: 3186–3197

    PubMed  CAS  Google Scholar 

  • Huppmann P, Sporlein S, Bibikova M, Oesterhelt D, Wachtveitl J and Zinth W (2003) Electron transfer in reaction centers of Blastochloris viridis: Photosynthetic reactions approximating the adiabatic regime. J Phys Chem A 107: 8302–8309

    CAS  Google Scholar 

  • Hwang J-K and Warshel A (1987) Microscopic examination of free energy relationships for electron transfer in polar solvents. J Am Chem Soc 109: 715–720

    CAS  Google Scholar 

  • Hwang J-K and Warshel A (1997) On the relationship between the dispersed polaron and spin-boson models. Chem Phys Lett 271: 223–225

    CAS  Google Scholar 

  • Hwang J-K, Creighton S, King G, Whitney D and Warshel A (1988) Effects of solute-solvent coupling and solvent saturation on solvation dynamics of charge transfer reactions. J Chem Phys 89: 859–865

    CAS  Google Scholar 

  • Hörber JKH, Göbel W, Ogrodnik A, Michel-Beyerle M-E and Cogdell RJ (1986) Time-resolved measurements of fluorescence from reaction centers of Rhodopseudomonas sphaeroides. FEBS Lett 198: 273–278

    Google Scholar 

  • Hughes JM, Hutter, MC, Reimers JR and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structure, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123: 8550–8563

    PubMed  CAS  Google Scholar 

  • Ivashin N and Larsson S (2002) Vibrational mechanism for primary charge separation in the reaction center of Rhodobacter sphaeroides. J Phys Chem B 106: 3996–4009

    CAS  Google Scholar 

  • Ivashin N, Källenbring B, Larsson S and Hansson Ö (1998) Charge separation in photosynthetic reaction centers. J Phys Chem B 102: 5017–5022

    CAS  Google Scholar 

  • Jean JM and Fleming GR (1995) Competition between energy and phase relaxation in electronic curve crossing processes. J Chem Phys 103: 2092–2101

    CAS  Google Scholar 

  • Jean JM, Friesner RA and Fleming GR (1992) Application of a multilevel Redfield theory to electron-transfer in condensed phases. J Chem Phys 96: 5827–5842

    CAS  Google Scholar 

  • Jia Y, DiMagno TJ, Chan C-K, Wang Z, Du M, Hanson DK, Schiffer M, Norris JR, Fleming GR and Popov MS (1993) Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J Phys Chem 97: 13180–13191

    CAS  Google Scholar 

  • Johnson ET, Nagarajan V, Zazubovich V, Riley K, Small GJ and Parson WW (2003) Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 42: 13673–13683

    PubMed  CAS  Google Scholar 

  • Johnson SG, Tang D, Jankowiak R, Hayes JM, Small GJ and Tiede DM (1990) Primary donor state mode structure and energy transfer in bacterial reaction centers. J Phys Chem 94: 5849–5855

    CAS  Google Scholar 

  • Katilius E, Turanchik T, Lin S, Taguchi AKW and Woodbury NW (1999) B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J Phys Chem B 103: 7386–7389

    CAS  Google Scholar 

  • Katilius E, Katiliene Z, Lin S, Taguchi AKW and Woodbury NW (2002) B-side electron transfer in the HE(M182) reaction center mutant from Rhodobacter sphaeroides. J Phys Chem B 106: 12344–12350

    CAS  Google Scholar 

  • Katilius E, Babendure JL, Lin S and Woodbury NW (2004) Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side. Photosynth Res 81: 165–180

    CAS  Google Scholar 

  • Kaufmann KJ, Petty KM, Dutton PL and Rentzepis PM (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188: 1301–1304

    PubMed  CAS  Google Scholar 

  • Kellog EC, Kolaczkowski S, Wasielewski MR and Tiede DM (1989) Measurement of the extent of electron transfer to the bacteriopheophytin in the M-subunit in reaction centers of Rhodopseudomonas viridis. Photosynth Res 22: 47–59

    Google Scholar 

  • Kennis JT, Shkuropatov AY, van Stokkum IHM, Gast P, Hoff AJ, Shuvalov VA and Aartsma TJ (1997) Formation of a long-lived P+BA - state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry 36: 16231–16238

    PubMed  CAS  Google Scholar 

  • Kestner NR, Logan J and Jortner J (1974) Thermal electron transfer reactions in polar solvents. J Phys Chem 78: 2148–2166

    CAS  Google Scholar 

  • King BA, de Winter A, McAnaney T and Boxer SG (2001) Excited state energy transfer pathways in photosynthetic reaction centers. 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B 105: 1856–1862

    CAS  Google Scholar 

  • Kirmaier C and Holten D (1988) Subpicosecond spectroscopy of charge separation in Rhodobacter capsulatus reaction centers. Israel J Chem 28: 79–85

    CAS  Google Scholar 

  • Kirmaier C and Holten D (1990) Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron transfer reactions. Proc Natl Acad Sci USA 87: 3552–3556

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985a) Picosecond photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K: effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61

    CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985b) Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810: 33–48

    CAS  Google Scholar 

  • Kirmaier C, Laporte L, Schenck CC and Holten D (1995a) The nature and dynamics of the charge-separated intermediate in reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. 1. Spectral characterization of the transient state. J Phys Chem 99: 8903–8909

    CAS  Google Scholar 

  • Kirmaier C, Laporte L, Schenck CC and Holten D (1995b) The nature and dynamics of the charge-separated intermediate in reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. 2. The rates and yields of charge separation and recombination. J Phys Chem 99: 8910–8917

    CAS  Google Scholar 

  • Kirmaier C, Weems D and Holten D (1999) M-side electron transfer in reaction center mutants with a lysine near the nonphotoactive B bacteriochlorophyll. Biochemistry 38: 11516–11530

    PubMed  CAS  Google Scholar 

  • Kirmaier C, He C and Holten D (2001) Manipulating the direction of electron transfer in the bacterial reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochemistry 40: 12132–12139

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Laible PD, Czarnecki K, Hata AN, Hanson DK, Bocian DF and Holten D (2002) Comparison of M-side electron transfer in Rba. sphaeroides and Rba. capsulatus reaction centers. J Phys Chem B 106: 1799–1808

    CAS  Google Scholar 

  • Kirmaier C, Laible PD, Hanson DK and Holten D (2004) B-side electron transfer to form P+HB - in reaction centers from the F(L181)Y/Y(M208)F mutant of Rhodobacter capsulatus. J Phys Chem B 108: 11827–11832

    CAS  Google Scholar 

  • Kitzing E and Kühn H (1990) Primary electron transfer in photosynthetic reaction centers. J Phys Chem 94: 1699–1702

    Google Scholar 

  • Kolbasov D and Scherz A (1998) Matrix elements play a significant role in asymetric electron transfer in bacterial reaction centers. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 719–722. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kolbasov D and Scherz A (2000) Asymmetric electron transfer in reaction centers of purple bacteria strongly depends on different electron matrix elements in the active and inactive branches. J Phys Chem B 104: 1802–1809

    CAS  Google Scholar 

  • Kubo R (1966) The fluctuation-dissipation theorem. Rept Progr Theor Phys 29: 255–284

    CAS  Google Scholar 

  • Kubo R and Toyozawa Y (1955) Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal. Prog Theor Phys 13: 160–182

    Google Scholar 

  • Lauterwasser C, Finkele U, Scheer. H and Zinth W (1991) Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides. Chem Phys Lett 183: 471–477

    CAS  Google Scholar 

  • Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A and Zwerger W (1987) Dynamics of the dissipative two-state system. Rev Mod Phys 59: 1–85

    CAS  Google Scholar 

  • Lin S, Taguchi AKW and Woodbury NW (1996a) Excitation wavelength dependence of energy transfer and charge separation in reaction centers from Rhodobacter sphaeroides: Evidence for adiabatic electron transfer. J Phys Chem 100: 17067–17078

    CAS  Google Scholar 

  • Lin S, Xiao W, Eastman JE, Taguchi AKW and Woodbury NW (1996b) Low-temperature femtosecond-resolution transient absorption spectroscopy of large-scale symmetry mutants of bacterial reaction centers. Biochemistry 35: 3187–3196

    PubMed  CAS  Google Scholar 

  • Lin S, Jackson JA, Taguchi AKW and Woodbury NW (1999) B-side electron transfer promoted by absorbance of multiple photons in Rhodobacter sphaeroides R-26 reaction centers. J Phys Chem B 103: 4757–4763

    CAS  Google Scholar 

  • Lin S, Katilius E, Haffa ALM, Taguchi AKW and Woodbury NW (2001) Blue light drives B-side electron transfer in bacterial photosynthetic reaction centers. Biochemistry 40: 13767–13773

    PubMed  CAS  Google Scholar 

  • Lyle PA, Kolaczkowski SV and Small GJ (1993) Photochemical hole-burned spectra of protonated and deuterated reaction centers of Rhodobacter sphaeroides. J Phys Chem 97: 6924–6933

    CAS  Google Scholar 

  • Mar T and Gingras G (1990) Relative phototrapping rates of the two bacteriopheophytins in the photoreaction center of Ectothiorhodospira sp. Biochim Biophys Acta 1017: 112–117

    CAS  Google Scholar 

  • Marchi M, Gehlen JN, Chandler D and Newton M (1993) Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. J Am Chem Soc 115: 4178–4190

    CAS  Google Scholar 

  • Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron-transfer. I. J Chem Phys 24: 966–978

    CAS  Google Scholar 

  • Marcus RA (1964) Chemical and electrochemical electron transfer theory. Ann Rev Phys Chem 15: 155–196

    CAS  Google Scholar 

  • Marcus RA (1993) Electron-transfer reactions in chemistry— theory and experiment (Nobel lecture). Angew Chem Int Ed Engl 32: 1111–1121

    Google Scholar 

  • Martin J-L, Breton J, Hoff AJ, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ± 0.2 psec. Proc Natl Acad Sci USA 83: 957–961

    PubMed  CAS  Google Scholar 

  • Martin J-L and Vos MH (1992) Femtosecond biology. Ann Rev Biophys Biomol Struct 21: 199–222

    CAS  Google Scholar 

  • Mercer IP, Gould IR and Klug DR (1999) A quantum mechanical/molecular mechanical approach to relaxation dynamics: Calculation of the optical properties of solvated bacteriochlorophyll-a. J Phys Chem B 103: 7720–7727

    CAS  Google Scholar 

  • Middendorf TR, Mazzola LT, Gaul DF, Schenck CC and Boxer SG (1991) Photochemical hole-burning spectroscopy of a photosynthetic reaction center mutant with altered charge separation kinetics: Properties and decay of the initially excited state. J Phys Chem 95: 10142–10151

    CAS  Google Scholar 

  • Miller WH and George TF (1972) Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom. J Chem Phys 56: 5637–5652

    CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1992) Nature of biological electron transfer. Nature 355: 796–802

    PubMed  CAS  Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AK, Woodbury NW and Williams JC (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: Phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32: 3498–3505

    PubMed  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Gaul D and Schenck C (1990) Effect of directed mutations of the tyrosine at site (M)210 on the primary photosynthetic electron transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 7888–7892

    PubMed  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Davis D and Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32: 12324–12336

    PubMed  CAS  Google Scholar 

  • Newton MD (2003) Electronic coupling in electron transfer and the influence of nuclear modes: theoretical and computational probes. Theor Chem Acc 110: 307–321

    CAS  Google Scholar 

  • Ogrodnik A (1990) The free energy difference between the excited primary donor 1P* and the radical pair state P+H- in reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta 1020: 65–71

    CAS  Google Scholar 

  • Ogrodnik A, Volk M, Letterer R, Feik R and Michel-Beyerle M-E (1988) Determination of free energies in reaction centers of Rb. sphaeroides. Biochim Biophys Acta 936: 361–371

    CAS  Google Scholar 

  • Ogrodnik A, Keupp W, Volk M, Auermeier G and Michel-Beyerle ME (1994) Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination dynamics of P+HA - when detected in delayed emission and in absorption. J Phys Chem 98: 3432–3439

    CAS  Google Scholar 

  • Ogrodnik A, Hartwich G, Lossau H and Michel-Beyerle ME (1999) Dispersive charge separation and conformational cooling of P+HA - in reaction centers of Rb. sphaeroides R26: A spontaneous emission study. Chem Phys 244: 461–478

    CAS  Google Scholar 

  • Okada A (2000) Qualitative features of electron transfer reaction for high viscosity of solvent and low activation barrier. J Phys Chem A 104: 7744–7750

    CAS  Google Scholar 

  • Parson WW and Warshel A (2004a) A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem Phys 296: 201–206

    CAS  Google Scholar 

  • Parson WW and Warshel A (2004b) Dependence of photosynthetic electron-transfer kinetics on temperature and energy in a density-matrix model. J Phys Chem B 108: 10474–10483

    CAS  Google Scholar 

  • Parson WW and Warshel A (2006) Calculations of electrostatic energies in proteins using microscopic, semimicroscopic and macroscopic models and free-energy perturbation approaches. In: Aartsma TJ and Matysik J (eds) Biophysical Techniques in Photosynthesis, Vol 2. in press. Springer, Dordrecht

    Google Scholar 

  • Parson WW, Clayton RK and Cogdell RJ (1975) Excited states of photosynthetic reaction centers at low redox potentials. Biochim Biophys Acta 387: 265–278

    PubMed  CAS  Google Scholar 

  • Parson WW, Creighton S and Warshel A (1987) Calculations of spectroscopic properties and electron transfer kinetics of photosynthetic bacterial reaction centers. In: Kobayashi T (ed) Primary Processes in Photobiology, pp 43–51. Springer-Verlag, Berlin

    Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251–272

    PubMed  CAS  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1998) Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys J 74: 182–191

    PubMed  CAS  Google Scholar 

  • Paschenko VZ, Korvatovskii BN, Kononenko AA, Chamorovsky SK and Rubin AB (1985) Estimation of the rate of photochemical charge separation in Rhodopseudomonas sphaeroides reaction centers by fluorescence and absorption picosecond spectroscopy. FEBS Lett 191: 245–248

    Google Scholar 

  • Peloquin JM, Williams JC, Lin X, Alden RG, Taguchi AKW, Allen JP and Woodbury NW (1994) Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry 33: 8089–8100

    PubMed  CAS  Google Scholar 

  • Peloquin JM, Lin S, Taguchi AKW and Woodbury NW (1995) Excitation wavelength dependence of bacterial reaction center photochemistry. 1. Ground state and excited state evolution. J Phys Chem 99: 1349–1356

    CAS  Google Scholar 

  • Peloquin JM, Lin S, Taguchi AKW and Woodbury NW (1996) Excitation wavelength dependence of bacterial reaction center photochemistry. 2. Low-temperature measurements and spectroscopy of charge separation. J Phys Chem 100: 14228–14235

    CAS  Google Scholar 

  • Pollard WT, Felts AK and Friesner RA (1996) The Redfield equation in condensed-phase quantum dynamics. Adv Chem Phys 93: 77–134

    CAS  Google Scholar 

  • Procacci P, Darden TA, Paci E and Marchi M (1997) ORAC: A molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions. J Comp Chem 18: 1848–1862

    CAS  Google Scholar 

  • Rademaker J and Hoff AJ (1981) The balance between primary forward and back reaction in bacterial photosynthesis. Biophys J 34: 325–344

    PubMed  CAS  Google Scholar 

  • Reddy NRS, Lyle PA and Small GJ (1992) Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth Res 31: 167–194

    CAS  Google Scholar 

  • Redfield AG (1965) The theory of relaxation processes. Adv Magn Res 1: 1–32

    Google Scholar 

  • Rips I and Jortner J (1988) Activationless solvent-controlled electron transfer. J Chem Phys 88: 818–822

    CAS  Google Scholar 

  • Rischel C, Spiedel D, Ridge JP, Jones MR, Breton J, Lambry JC, Martin J-L and Vos MH (1998) Low frequency vibrational modes in proteins: Changes induced by point-mutations in the protein-cofactor matrix of bacterial reaction centers. Proc Natl Acad Sci USA 95: 12306–12311

    PubMed  CAS  Google Scholar 

  • Roberts JA, Holten D and Kirmaier C (2001) Primary events in photosynthetic reaction centers with multiple mutations near the photoactive electron carriers. J Phys Chem B 105: 5575–5584

    CAS  Google Scholar 

  • Robles SJ, Breton J and Youvan DC (1990a) Partial symmetrization of the photosynthetic reaction center. Science 248: 1402–1405

    PubMed  CAS  Google Scholar 

  • Robles SJ, Breton J and Youvan DC (1990b) Transmembrane helix exchanges between quasi-symmetric subunits of the photosynthetic reaction center. In: Michel-Beyerle M-E (ed) Reaction Centers of Photosynthetic Bacteria, pp 283–291. Springer, Berlin

    Google Scholar 

  • Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72: 2251–2255

    PubMed  CAS  Google Scholar 

  • Sarai A (1980) Possible role of protein in photosynthetic electron transfer. Biochim Biophys Acta 589: 71–82

    PubMed  CAS  Google Scholar 

  • Schenck CC, Parson WW, Holten D, Windsor MW and Sarai A (1981) Temperature dependence of electron transfer between bacteriopheophytin and ubiquinone in protonated and deuterated reaction centers of Rhodopseudomonas sphaeroides. Biophys J 36: 479–489

    PubMed  CAS  Google Scholar 

  • Schenck CC, Blankenship RE and Parson WW (1982) Radical-pair decay kinetics, triplet yields, and delayed fluorescence from bacterial reaction centers. Biochim Biophys Acta 680: 44–59

    CAS  Google Scholar 

  • Scherer POJ and Fischer SF (1989) Long-range electron transfer within the hexamer of the photosynthetic reaction center Rhodopseudomonas viridis. J Phys Chem 93: 1633–1637

    CAS  Google Scholar 

  • Scherer POJ and Fischer SF (1998) Charge transfer states of the reaction center. Spectrochim Acta A 54A: 1191–1199

    CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Naegele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Lett 223: 116–120

    CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nägele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1995) Primary electron-transfer dynamics in modified bacterial reaction centers containing pheophytin-a instead of bacteriopheophytin-a. Spectrochim Acta A 51A: 1565–1578

    CAS  Google Scholar 

  • Schulten K and Tesch M (1991) Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys 158: 421–446

    CAS  Google Scholar 

  • Sham YY and Warshel A (1998) The surface constrained all atom model provides size-independent results in calculations of hydration free energies. J Chem Phys 109: 7940–7944

    CAS  Google Scholar 

  • Shkuropatov AY and Shuvalov VA (1993) Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26). FEBS Lett 322: 168–172

    PubMed  CAS  Google Scholar 

  • Shochat S, Arlt T, Francke C, Gast P, van Noort PI, Orte SC, Schelvis HPM, Schmidt S, Vijgenboom E, Vrieze J, Zinth W and Hoff AJ (1994) Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res 40: 55–66

    CAS  Google Scholar 

  • Shuvalov VA and Klimov VV (1976) The primary photoreactions in the complex cytochrome-P-890 · P-760 (bacteriopheophytin760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    PubMed  CAS  Google Scholar 

  • Shuvalov VA and Parson WW (1980) Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc Natl Acad Sci USA 78: 957–961

    Google Scholar 

  • Shuvalov VA and Yakovlev AG (2003) Coupling of nuclear wavepacket motion and charge separation in bacterial reaction centers. FEBS Lett 540: 26–34

    PubMed  CAS  Google Scholar 

  • Sim E and Makri N (1997) Path integral simulation of charge transfer dynamics in photosynthetic reaction centers. J Phys Chem B 101: 5446–5458

    CAS  Google Scholar 

  • Skourtis SS, Balabin IA, Kawatsu T and Beratan DN (2005) Protein dynamics and electron transfer: Electronic decoherence and non-Condon effects. Proc Natl Acad Sci USA 102: 3552–3557

    PubMed  CAS  Google Scholar 

  • Slichter CP (1963) Principles of Magnetic Resonance with Examples from Solid State Physics. Harper & Row, New York

    Google Scholar 

  • Small GJ (1995) On the validity of the standard model for primary charge separation in the bacterial reaction center. Chem Phys 197: 239–257

    CAS  Google Scholar 

  • Small GJ, Hayes JM and Silbey RJ (1992) The question of dispersive kinetics for the initial phase of charge separation in bacterial reaction centers. J Phys Chem 96: 7499–7501

    CAS  Google Scholar 

  • Spörlein S, Zinth W and Wachtveitl J (1998) Vibrational coherence in photosynthetic reaction centers observed in the bacteriochlorophyll anion band. J Phys Chem B 102: 7492–7496

    Google Scholar 

  • Spörlein S, Zinth W, Meyer M, Scheer H and Wachtveitl J (2000) Primary electron transfer in modified bacterial reaction centers: Optimization of the first events in photosynthesis. Chem Phys Lett 322: 454–464

    Google Scholar 

  • Stanley RJ and Boxer SG (1995) Oscillations in spontaneous fluorescence from photosynthetic reaction centers. J Phys Chem 99: 859–863

    CAS  Google Scholar 

  • Steffen MA, Lao KQ and Boxer SG (1994) Dielectric asymmetry in the photosynthetic reaction center. Science 264: 810–816

    PubMed  CAS  Google Scholar 

  • Sumi H and Marcus RA (1986) Dynamical effects in electron transfer reactions. J Chem Phys 84: 4894–4914

    CAS  Google Scholar 

  • Taguchi AKW, Stocker JW, Alden RG, Causgrove TP, Peloquin JM, Boxer SG and Woodbury NW (1992) Biochemical characterization and electron-transfer reactions of syml, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor. Biochemistry 31: 10345–10355

    PubMed  CAS  Google Scholar 

  • Taguchi AKW, Eastman JE, Gallo DM, Sheagley E, Xiao W and Woodbury NW (1996) Asymmetry requirements in the photosynthetic reaction center of Rhodobacter capsulatus. Biochemistry 35: 3175–3186

    PubMed  CAS  Google Scholar 

  • Takiff L and Boxer SG (1988) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Biochim Biophys Acta 932: 325–334

    CAS  Google Scholar 

  • Thompson MA, Zerner MC and Fajer J (1991) A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113: 8210–8215

    CAS  Google Scholar 

  • Trissl HW, Breton J, Deprez J, Dobek A and Leibl W (1990) Trapping kinetics, annihilation and quantum yield in the photosynthetic bacterium Rhodopseudomonas viridis as revealed by electric measurement of the primary charge separation. Biochim Biophys Acta 1015: 322–333

    CAS  Google Scholar 

  • Tully JC and Preston RM (1971) Trajectory surface hopping approach to nonadiabatic molecular collisions: The reaction of H+ with D2. J Chem Phys 55: 562–572

    CAS  Google Scholar 

  • van Brederode ME, Jones MR, van Mourik F, van Stokkum IHM and van Grondelle R (1997) A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36: 6855–6861

    PubMed  Google Scholar 

  • van Brederode ME, van Mourik F, van Stokkum IHM, Jones MR and van Grondelle R (1999) Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 96: 2054–2059

    PubMed  Google Scholar 

  • van Stokkum IHM, Beekman LMP, Jones MR, van Brederode ME and van Grondelle R (1997) Primary electron transfer kinetics in membrane-bound Rhodobacter sphaeroides reaction centers: A global and target analysis. Biochemistry 36: 11360–11368

    PubMed  Google Scholar 

  • Volk M, Aumeier G, Langenbacher T, Feick R, Ogrodnik A and Michel-Beyerle M-E (1998) Energetics and mechanism of primary charge separation in bacterial photosynthesis. A comparative study on reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus. J Phys Chem B 102: 735–751

    Google Scholar 

  • Vos M and Martin J-L (1999) Femtosecond processes in proteins. Biochim Biophys Acta 1411: 1–20

    PubMed  CAS  Google Scholar 

  • Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J and Martin J-L (1991) Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc Natl Acad Sci USA 88: 8885–8889

    PubMed  CAS  Google Scholar 

  • Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J and Martin J-L (1992) Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci USA 89: 613–617

    PubMed  CAS  Google Scholar 

  • Vos MH, Rappaport F, Lambry J-H, Breton J and Martin J-L (1993) Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363: 320–325

    CAS  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J and Martin J-L (1994a) Coherent nuclear dynamics at room temperature in bacterial reaction centers. Proc Natl Acad Sci USA 91: 12701–12705

    PubMed  CAS  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J, Lambry J-C and Martin J-L (1994b) Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33: 6750–6757

    PubMed  CAS  Google Scholar 

  • Vos MH, Jones MR, Breton J, Lambry JC and Martin J-L (1996) Vibrational dephasing of long- and short-lived primary donor excited states in mutant reaction centers of Rhodobacter sphaeroides. Biochemistry 35: 2687–2692

    PubMed  CAS  Google Scholar 

  • Vos MH, Rischel C, Jones MR and Martin J-L (2000) Electrochromic detection of a coherent component in the formation of the charge pair P+HL - in bacterial reaction centers. Biochemistry 39: 8353–8361

    PubMed  CAS  Google Scholar 

  • Wakeham MC and Jones MR (2005) Rewiring photosynthesis: Engineering wrong-way electron transfer in the purple bacterial reaction center. Biochem Soc Trans 133: 851–857

    Google Scholar 

  • Walsh AM and Coalson RD (1992) Redfield theory is quantitative for coupled harmonic oscillators. Chem Phys Lett 198: 293–299

    CAS  Google Scholar 

  • Wang HW, Lin S, Allen JP, Williams JC, Blankert S, Laser C and Woodbury NW (2007) Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science 316: 747–750

    PubMed  CAS  Google Scholar 

  • Wang Z, Pearlstein RM, Jia Y, Fleming GR and Norris JR (1993) Inhomogeneous electron-transfer kinetics in reaction centers of bacterial photosynthesis. Chem Phys 176: 421–425

    CAS  Google Scholar 

  • Warshel A (1982) Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and protontransfer reactions. J Phys Chem 86: 2218–2224

    CAS  Google Scholar 

  • Warshel A and Hwang J-K (1986) Simulation of the dynamics of electron transfer reactions in polar solvents: semiclassical trajectories and dispersed polaron approaches. J Chem Phys 84: 4938–4957

    CAS  Google Scholar 

  • Warshel A and Parson WW (1991) Computer simulations of electron transfer reactions in solution and photosynthetic reaction centers. Ann Rev Phys Chem 42: 279–309

    CAS  Google Scholar 

  • Warshel A and Parson WW (2001) Dynamics of biochemical and biophysical reactions: insight from computer simulations. Quart Rev Biophys 34: 563–679

    CAS  Google Scholar 

  • Warshel A and Russell ST (1984) Calculations of electrostatic interactions in biological systems and in solutions. Quart Rev Biophys 17: 283–290

    CAS  Google Scholar 

  • Warshel A, Creighton S and Parson WW (1988) Electron-transfer pathways in the primary event of bacterial photosynthesis. J Phys Chem 92: 2698–2701

    Google Scholar 

  • Warshel A, Chu ZT and Parson WW (1989) Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science 246: 112–116

    PubMed  CAS  Google Scholar 

  • Warshel A, Sharma PK, Kato M and Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764: 1647–1676

    PubMed  CAS  Google Scholar 

  • Wasielewski MR and Tiede DM (1986) Sub-picosecond measurements of primary electron transfer in Rhodopseudomonas viridis reaction centers using near-infrared excitation. FEBS Lett 204: 368–372

    CAS  Google Scholar 

  • Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW and Allen JP (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31: 11029–11037

    PubMed  CAS  Google Scholar 

  • Woodbury NWT and Parson WW (1984) Nanosecond fluorescence from isolated reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 767: 345–361

    PubMed  CAS  Google Scholar 

  • Woodbury NW, Becker M, Middendorf D and Parson WW (1985) Picosecond kinetics of the initial photochemical electrontransfer reaction in bacterial photosynthetic reaction centers. Biochemistry 24: 7516–7521

    PubMed  CAS  Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851: 6–22

    PubMed  CAS  Google Scholar 

  • Woodbury NW, Peloquin JM, Alden RG, Lin X, Taguchi AKW, Williams JC and Allen JP (1994) Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry 33: 8101–8112

    PubMed  CAS  Google Scholar 

  • Wraight CA and Clayton RK (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim Biophys Acta 333: 246–260

    CAS  Google Scholar 

  • Yakovlev AG and Shuvalov VA (2000) Formation of bacteriochlorophyll anion band at 1020 nm produced by nuclear wavepacket motion in bacterial reaction centers. J Chin Chem Soc 47: 1–6

    Google Scholar 

  • Yakovlev AG, Shkuropatov AC and Shuvalov AV (2000) Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers. FEBS Lett 466: 209–212

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Shkuropatov AY and Shuvalov VA (2002) Nuclear wavepacketmotion between P* and P+BA - potential surfaces with subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature. Biochemistry 41: 2667–2674

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Vasilieva LG, Shkuropatov AY, Bolgarina TI, Shkuropatova VA and Shuvalov VA (2003) Mechanism of charge separation and stabilization of separated charges in reaction centers of Chloroflexus aurantiacus and of YM210W(L) mutants of Rhodobacter sphaeroides excited by 20 fs pulses at 90 K. J Phys Chem A 107: 8330–8338

    CAS  Google Scholar 

  • Zhang LY and Friesner RA (1998) Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proc Natl Acad Sci USA 95: 13603–13605

    PubMed  CAS  Google Scholar 

  • Zhou H and Boxer SG (1998a) Probing excited-state electron transfer by resonance Stark spectroscopy. 1. Experimental results for photosynthetic reaction centers. J Phys Chem B 102: 9139–9147

    CAS  Google Scholar 

  • Zhou H and Boxer SG (1998b) Probing excited-state electron transfer by resonance Stark spectroscopy. 2. Theory and application. J Phys Chem B 102: 9148–9160

    CAS  Google Scholar 

  • Zusman LD and Beratan DN (1998) Electron transfer in the photosynthetic reaction center: Mechanistic implications of mutagenesis studies. Spectrochim Acta A 54A: 1211–1218

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Parson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Parson, W.W., Warshel, A. (2009). Mechanism of Charge Separation in Purple Bacterial Reaction Centers. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_19

Download citation

Publish with us

Policies and ethics