Skip to main content

From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

The purple bacterial photosynthetic unit (PSU) is a macromolecular assembly of remarkable simplicity that harvests sunlight with the cooperation of only half a dozen different kinds of proteins. This chapter provides a summary of recent research on the architectural and biophysical aspects of the PSU and its constituents. First, a brief overview is provided of the structure of light-harvesting components. Then the effects of thermal disorder and spectral universality on the light-harvesting function of the pigment-protein complexes is discussed, followed by an account of the physical constraints that shape the evolution of light-harvesting complexes in general. Finally, a summary is provided of recent research on the in silico assembly of an entire PSU in atomic detail. This supramolecular reconstruction of the PSU is made possible by the recent availability of not only the structural data on the individual constituent proteins but also on their global arrangement. The reconstruction is performed by combining data from X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and atomic force microscopy using computational modeling. The architecture of the PSU vesicle that emerges constitutes nearly two hundred light-harvesting proteins, containing around four thousand chlorophylls, which act cooperatively to maintain a very high quantum yield in a pigment array distributed over a pseudo-spherical intracytoplasmic membrane domain with an inner diameter of 60 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AFM:

atomic force microscopy

bc1 complex:

ubiquinol-cytochrome c 2 oxidoreductase

BChl:

bacteriochlorophyll

Chl:

chlorophyll

cryo-EM:

cryo-electron microscopy

LD:

linear dichroism

LH1:

light-harvesting complex 1

LH2:

light-harvesting complex 2

PS I:

Photosystem I

PSU:

photosynthetic unit

RC:

reaction center

References

  • Aagaard J and Sistrom W (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    PubMed  CAS  Google Scholar 

  • Allen J, Yeates T, Komiya H and Rees D (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    PubMed  CAS  Google Scholar 

  • Amesz J and Neerken S (2002) Excitation energy trapping in anoxygenic photosynthetic bacteria. Photosynth Res 73: 73–81

    PubMed  CAS  Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant Photosystem I supercomplex at 3.4 Å resolution. Nature 447: 58–63

    PubMed  CAS  Google Scholar 

  • Andreev AV, Agam O, Altshuler BL and Simons BD (1996) Quantum chaos, irreversible classical dynamics, and random matrix theory. Phys Rev Lett 76: 3947–3950

    PubMed  CAS  Google Scholar 

  • Arnold W and Oppenheimer JR (1950) Internal conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33: 423–435

    PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, vander Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C and Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062

    PubMed  CAS  Google Scholar 

  • Beekman LMP, van Mourik F, Jones MR, Visser HM, Hunter CN and van Grondelle R (1994) Trapping kinetics in mutants of the photosynthetic purple bacterium Rhodobacter sphaeroides: the influence of the charge separation rate. Biochemistry 33: 3143–3147

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635

    PubMed  CAS  Google Scholar 

  • Bernhardt K and Trissl H-W (2000) Escape probability and trapping mechanism in purple bacteria: Revisited. Biochim BiophysActa 1457: 1–17

    CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001b) Three-dimensional model and characterization of the iron stress-induced CP43′-Photosystem I supercomplex isolated from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 276: 43246–43252

    PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD and Barber J (2003) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Maiden

    Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Nat Acad Sci USA 99: 11055–11060

    PubMed  CAS  Google Scholar 

  • Chandler D, Hsin J, Harrison CB, Gumbart J and Schulten K (2008) Intrinsic curvature properties of photosynthetic proteins in chromatophores. Biophys J, in press

    Google Scholar 

  • Cogdell RJ, Gall A and Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Quart Rev Biophys 39: 227–324

    CAS  Google Scholar 

  • Conroy MJ, Westerhuis W, Parkes-Loach PS, Loach PA, Hunter CN and Williamson MP (2000) The solution structure of the Rhodobacter sphaeroides LH1 polypeptide reveals two helical domains separated by a flexible region: Structural consequences for the LH1 complex. J Mol Biol 298: 83–94

    PubMed  CAS  Google Scholar 

  • Cory MG, Zerner MC, Hu X and Schulten K (1998) Electronic excitations in aggregates of bacteriochlorophylls. J Phys Chem B 102: 7640–7650

    CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR and Snozzi M (1983) The role of the quinone pool in the cyclic electron transfer chain of Rps sphaeroides: A modified Q-cycle mechanism. Biochim Biophys Acta 723: 202–218

    CAS  Google Scholar 

  • Damjanović A, Ritz T and Schulten K (1999) Energy transfer between carotenoids and bacteriochlorophylls in a light harvesting protein. Phys Rev E 59: 3293–3311

    Google Scholar 

  • Damjanović A, Ritz T and Schulten K (2000a) Excitation energy trapping by the reaction center of Rhodobacter sphaeroides. Int J Quantum Chem 77: 139–151

    Google Scholar 

  • Damjanović A, Ritz T and Schulten K (2000b) Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J 79: 1695–1705

    PubMed  Google Scholar 

  • Damjanović A, Kosztin I, Kleinekathoefer U and Schulten K (2002a) Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry and polaron model study. Phys Rev E 65: 031919

    Google Scholar 

  • Damjanović A, Vaswani HM, Fromme P and Fleming GR (2002b) Chlorophyll excitations in Photosystem I of Synechococcus elongates. J Phys Chem B 106: 10251–10262

    Google Scholar 

  • Deisenhofer J, Epp O, Mikki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318: 618–624

    Google Scholar 

  • Dexter D (1953) A theory of sensitized luminescence in solids. J Chem Phys 21: 836–850

    CAS  Google Scholar 

  • Eccles J, Honig B and Schulten K (1988) Spectroscopic determinants in the reaction center of Rhodopseudomonas viridis. Biophys J 53: 137–144

    CAS  PubMed  Google Scholar 

  • Efetov K (1995) Supersymmetry in quantum chaos and mesoscopic physics. Physica D 83: 151–162

    Google Scholar 

  • Emerson R and Arnold A (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65Å resolution: Cofactors and protein-cofactor interactions. Structure 2: 925–936

    PubMed  CAS  Google Scholar 

  • Feniouk BA, Cherepanov DA, Voskoboynikova NE, Mulkidjanian AY and Junge W (2002) Chromatophore vesicles of Rhodobacter capsulatus contain on average one F0F1-ATP synthase each. Biophys J 82: 1115–1122

    PubMed  CAS  Google Scholar 

  • Filiingame RH (2000) Getting to the bottom of the F1ATPase. Nature Struct Biol 7: 1002–1004

    Google Scholar 

  • Fillingame RH, Jiang W and Dmitriev OY (2000) Coupling H+ transport to rotary catalysis in F-type ATP synthases: Structure and organization of the transmembrane rotary motor. J Exp Biol 203: 9–17

    PubMed  CAS  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys (Leipzig) 2: 55–75

    Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A and Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279: 2063–2068

    PubMed  CAS  Google Scholar 

  • Frese RN, Olsen J, Branvall R, Westerhuis W, Hunter CN and van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX. Proc Natl Acad Sci USA 97: 5197–5202

    PubMed  CAS  Google Scholar 

  • Frese RN, Siebert CA, Niederman RA, Hunter CN, Otto C and van Grondelle R (2004) The long-range organization of a native photosynthetic membrane. Proc Natl Acad Sci USA 101: 17994–17999

    PubMed  CAS  Google Scholar 

  • Frese RN, Pàmies, JC, Olsen, JD, Bahatyrova S, van der Weij-de Wit CD, Aartsma TJ., Otto C, Hunter CN, Frenkel D and van Grondelle R (2008) Protein shape and crowding drive domain formation and curvature in biological membranes. Biophys J 19: 640–647

    Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Van Doren SR, Arnaud S, Crofts AR, Davidson E, Gray KA and Daldal F (1993) The bc 1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioener Biomemb 25: 195–209

    CAS  Google Scholar 

  • Geyer T and Helms V (2006) Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Biophys J 91: 927–937

    PubMed  CAS  Google Scholar 

  • Gobets B, van Stokkum IH, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP and van Grondelle R (2001) Timeresolved fluorescence emission measurements of Photosystem I particles of various cyanobacteria: A unified compartmental model. Biophys J 81: 407–424

    PubMed  CAS  Google Scholar 

  • Govindjee (2000) Milestones in photosynthesis research. In: Yunus M, Pathre U and Mohanty P (eds) Probing Photosynthesis: Mechanisms, Regulation, and Adaptation, pp 9–39. Taylor and Francis, New York

    Google Scholar 

  • Groot M, Yu J, Agarwal R, Norris JR and Fleming GR (1998) Three-pulse photon echo measurements on the accessory pigments in the reaction center of Rhodobacter sphaeroides. J Phys Chem B 102: 5923–5931

    CAS  Google Scholar 

  • Guhr T, Muller-Groeling A and Weidenmuller HA (1998) Random matrix theories in quantum physics: Common concepts. Phys Rep 299: 189–425

    CAS  Google Scholar 

  • Hu X and Schulten K (1998) A model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys J 75: 683–694

    PubMed  CAS  Google Scholar 

  • Hu X, Xu D, Hamer K, Schulten K, Koepke J and Michel H (1995) Predicting the structure of the light-harvesting complex II of Rhodospirillum molischianum. Prot Sci 4: 1670–1682

    CAS  Google Scholar 

  • Hu X, Ritz T, Damjanović A and Schulten K (1997) Pigment organization and transfer of electronic excitation in the purple bacteria. J Phys Chem B 101: 3854–3871

    CAS  Google Scholar 

  • Hu X, Damjanović A, Ritz T and Schulten K (1998) Architecture and function of the light harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935–5941

    PubMed  CAS  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35: 1–62

    CAS  Google Scholar 

  • Humphrey W, Dalke A and Schulten K (1996) VMD — Visual Molecular Dynamics. J Mol Graphics 14: 33–38

    CAS  Google Scholar 

  • Hunter CN, Kramer HJM and van Grondelle R (1985) Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 807: 44–51

    CAS  Google Scholar 

  • Hunter CN, Tucker JD, Niederman RA (2005) Perspective on the assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides. Photochem Photobiol Sci 4: 1023–1027

    PubMed  CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN and Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. J Mol Biol 21: 3927–3935

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosysteml at 2.5Å resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Jungas C, Ranck J, Rigaud J, Joliot P and Verméglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    PubMed  CAS  Google Scholar 

  • Junge W, Lill H and Engelbrecht S (1997) ATP synthase: An electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22: 420–423

    PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough P and Ghosh R (1995) 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Fleming GR (2001) Light harvesting by chlorophylls and carotenoids in the Photosystem I core complex of Synechococcus elongatus: A fluorescence upconversion study. J Phys Chem B 105: 4485–4494

    Google Scholar 

  • Knox RS and Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77: 497–501

    PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    PubMed  CAS  Google Scholar 

  • Koolhaas MHC, Frese RN, Fowler GJS, Bibby TS, Georgakopoulou S, van der Zwan G, Hunter CN and van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides. Biochemistry 37: 4693–4698

    CAS  Google Scholar 

  • Kosztin I and Schulten K (2008) Molecular dynamics methods for bioeletronic systems in photosynthesis. In: Aartsma T and Matysik J (eds) Biophysical Techniques in Photosynthesis II (Advances in Photosynthesis and Respiration, Vol 26), pp 445–464. Springer, Dordrecht

    Google Scholar 

  • Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) 3-dimensional structure of system-I of photosynthesis at 6 Ångström resolution. Nature 361: 326–331

    CAS  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature Struct Biol 3: 965–973

    PubMed  Google Scholar 

  • Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102: 5378–5386

    CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of Photosystem II. Nature 438: 1040–1044

    PubMed  CAS  Google Scholar 

  • Marcus RA (1956a) Electrostatic free energy and other properties of states having nonequilibrium polarization II. J Chem Phys 24: 979–989

    CAS  Google Scholar 

  • Marcus RA (1956b) On the energy of oxidation-reduction reactions involving electron transfer I. J Chem Phys 24: 966–978

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • Melkozernov AN (2001) Excitation energy transfer in Photosystem I from oxygenic organisms. Photosynth Res 70: 129–153

    PubMed  CAS  Google Scholar 

  • Melkozernov AN, Lin S, Blankenship RE and Valkunas L (2001) Spectral inhomogeneity of Photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp PCC6803 at 77 K. Biophys J 81: 1144–1154

    PubMed  CAS  Google Scholar 

  • Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York

    Google Scholar 

  • Murray JW and Barber J (2007) Structural characteristics of channels and pathways in Photosystem II including the identification of an oxygen channel. J Struct Biol 159: 228–237

    PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5: 971–982

    PubMed  CAS  Google Scholar 

  • Nelson N and Yocum CF (2006) Structure and Function of Photosystems I and II. Annu Rev Plant Biol 57: 521–565

    PubMed  CAS  Google Scholar 

  • Niederman RA, Mallon DE and Langan JJ (1976) Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta 440: 429–447

    PubMed  Google Scholar 

  • Niederman RA, Mallon DE and Parks LC (1979) Membranes of Rhodopseudomonas sphaeroides. VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes. Biochim Biophys Acta 555: 210–220

    PubMed  CAS  Google Scholar 

  • Nonella M and Schulten K (1991) Molecular dynamics simulation of electron transfer in proteins: Theory and application to Q a → Q b transfer in the photosynthetic reaction center. J Phys Chem 95: 2059–2067

    CAS  Google Scholar 

  • Onuchic JN, Beratan DN and Hopfield JJ (1986) Some aspects of electron-transfer reaction dynamics. J Phys Chem 90: 3707–3721

    CAS  Google Scholar 

  • Oppenheimer JR (1941) Internal conversion in photosynthesis. In: Proceedings of the American Physical Society. Phys Rev 60: 158

    CAS  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ and Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0Å resolution and 100K: New structural features and functionally relevant motions. J Mol Biol 326: 1523–1538

    PubMed  CAS  Google Scholar 

  • Park S, Şener MK, Lu D and Schulten K (2003) Reaction paths based on mean first-passage times. J Chem Phys 119: 1313–1319

    CAS  Google Scholar 

  • Parks LC and Niederman RA (1978) Membranes of Rhodopseudomonas sphaeroides. V Identification of bacteriochlorophyll a-depleted cytoplasmic membrane in phototrophically grown cells. Biochim Biophys Acta 511: 70–82

    PubMed  CAS  Google Scholar 

  • Pålsson L-O, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in Photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622

    Article  PubMed  Google Scholar 

  • Pugh R, McGlynn P, Jones M and Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: Interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366: 301–316

    PubMed  CAS  Google Scholar 

  • Qian P, Hunter CN and Bullough PA (2005) The 8.5Å, projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–960

    PubMed  CAS  Google Scholar 

  • Ritz T and Schulten K (2001) Physik der Photosynthese. Physikalische Blaetter 57: 49–53

    CAS  Google Scholar 

  • Ritz T, Hu X, Damjanović A and Schulten K (1998) Excitons and excitation transfer in the photosynthetic unit of purple bacteria. J Lumin 76–77: 310–321

    Google Scholar 

  • Ritz T, Damjanović A, Schulten K, Zhang J and Koyama Y (2000) Efficient light harvesting through carotenoids. Photosynth Res 66: 125–144

    PubMed  CAS  Google Scholar 

  • Ritz T, Park S and Schulten K (2001) Kinetics of excitation migration and trapping in the photosynthetic unit of purple bacteria. J Phys Chem B 105: 8259–8267

    CAS  Google Scholar 

  • Ritz T, Damjanović A and Schulten K (2002) The quantum physics of photosynthesis. Chem Phys Chem 3: 243–248

    PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Rutkauskas D, Novoderezhkin VI, Cogdell RJ and van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88: 422–435

    PubMed  CAS  Google Scholar 

  • Scheer H (1991) Chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Scheuring S, Levy D and Rigaud J-L (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712: 109–127

    PubMed  CAS  Google Scholar 

  • Scheuring S and Sturgis J (2005) Chromatic adaptation of photosynthetic membranes. Science 309: 484–487

    PubMed  CAS  Google Scholar 

  • Scheuring S, Sturgis JN, Prima V, Bernadac A, Levy D and Rigaud J-L (2004) Watching the photosynthetic apparatus in native membranes. Proc Natl Acad Sci USA 91: 11293–11297

    Google Scholar 

  • Scholes G, Gould I, Cogdell R and Fleming G (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps Acidophila. J Phys Chem B 103: 2543–2553

    CAS  Google Scholar 

  • Schulten K (1999) From simplicity to complexity and back: Function, architecture and mechanism of light harvesting systems in photosynthetic bacteria. In: Frauenfelder H, Deisenhofer J and Wolynes PG (eds) Simplicity and Complexity in Proteins and Nucleic Acids, pp 227–253. Dahlem University Press, Berlin

    Google Scholar 

  • Schulten K and Tesch M (1991) Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys 158: 421–446

    CAS  Google Scholar 

  • Şener MK (1999) Universality in random matrix models of quantum chromodynamics. PhD thesis, State University of New York at Stony Brook, Dept. of Physics, Stony Brook, NY

    Google Scholar 

  • Şener M and Schulten K (2002) A general random matrix approach to account for the effect of static disorder on the spectral properties of light harvesting systems. Phys Rev E 65: 031916

    Google Scholar 

  • Şener M and Schulten K (2005) Physical principles of efficient excitation transfer in light harvesting. In: Andrews DL (ed), Energy Harvesting Materials, pp 1–26. World Scientific, Singapore

    Google Scholar 

  • Şener MK, Lu D, Ritz T, Park S, Fromme P and Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106: 7948–7960

    Google Scholar 

  • Şener MK, Park S, Lu D, Damjanović A, Ritz T, Fromme P and Schulten K (2004) Excitation migration in trimeric cyanobacterial Photosystem I. J Chem Phys 120: 11183–11195

    PubMed  Google Scholar 

  • Şener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R and Schulten K (2005) Comparison of the light harvesting networks of plant and cyanobacterial Photosystem I. Biophys J 89: 1630–1642

    PubMed  Google Scholar 

  • Şener MK, Olsen JD, Hunter CN and Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Nat Acad Sci USA 104: 15723–15728

    PubMed  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough P (2004) The role of PufX in the molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides. EMBO J 23: 690–700

    PubMed  CAS  Google Scholar 

  • Snyder JP (1987) Map Projections—A working Manual. U S Geological Survey Professional Paper 1395. US Government Printing Office, Washington, DC

    Google Scholar 

  • Sumi H (2000) Structural strategies in the antenna system of photosynthesis on the basis of quantum-mechanical coherence among pigments. J Luminesc 87–89: 71–76

    Google Scholar 

  • Sumi H (2001) Bacterial photosynthesis begins with quantummechanical coherence. Chem Record 1: 480–493

    CAS  Google Scholar 

  • Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327–2346

    Google Scholar 

  • Timpmann K, Freiberg A and Sundström V (1995) Energy trapping and detrapping in the photosynthetic bacterium Rhodopseudomonas viridis: Transfer-to-trap-limited dynamics. Chem Phys 194: 275–283

    CAS  Google Scholar 

  • Tretiak S, Middleton C, Chernyak V and Mukamel S (2000) Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria. J Phys Chem B 104: 9540–9553

    CAS  Google Scholar 

  • Treutlein H, Schulten K, Deisenhofer J, Michel H, Brünger A and Karplus M (1988a) Molecular dynamics simulation of the primary processes in the photosynthetic reaction center of Rhodopseudomonas viridis. In: Breton J, Verméglio A (eds) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Vol 149, pp 139–150, NATO Sci Ser A. Plenum, New York

    Google Scholar 

  • Treutlein H, Schulten K, Niedermeier C, Deisenhofer J, Michel H and Devault D (1988b) Electrostatic control of electron transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. In: Breton J, Verméglio A (eds), The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Vol 149, pp 369–377, NATO Sci Ser A. Plenum, New York

    Google Scholar 

  • van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific, Singapore

    Google Scholar 

  • van Grondelle R and Novoderezhkin VI (2006) Energy transfer in photosynthesis: Experimental insights and quantitative models. Phys Chem Chem Phys 8: 793–807

    PubMed  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    CAS  Google Scholar 

  • Vasil’ev S and Bruce D (2004) Optimization and evolution of light harvesting in photosynthesis: The role of antenna chlorophyll conserved between Photosystem II and Photosystem I. Plant Cell 16: 3059–3068

    PubMed  CAS  Google Scholar 

  • Vasil’ev S, Shen J-R, Kamiya N and Bruce D (2004) The orientations of core antenna chlorophylls in Photosystem II are optimized to maximize the quantum yield of photosynthesis. FEBS Lett 561: 111–116

    PubMed  CAS  Google Scholar 

  • Velasco F and Crofts AR (1991) Complexes or super complexes: Inhibitor titrations show that electron transfer in chromatophores from Rb. sphaeroides involves a dimeric ubiquinol: cytochrome c oxidoreductase, and is delocalized. Biochem Soc Trans 19: 588–593

    Google Scholar 

  • Visscher KJ, Bergstrom H, Sundström V, Hunter CN and van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (wt and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22: 211–217

    CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobactersphaeroides: LH2 at 6Å, LH1 and LH1-RC at 25 Å. J Mol Biol 282: 833–845

    PubMed  CAS  Google Scholar 

  • Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60–66

    PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    PubMed  CAS  Google Scholar 

  • Xu D and Schulten K (1992) Multi-mode coupling of protein motion to electron transfer in the photosynthetic reaction center: Spin-boson theory based on a classical molecular dynamics simulation. In: Breton J and Verméglio A (eds), The Photosynthetic Bacterial Reaction Center: II Structure, Spectroscopy and Dynamics, pp 301–312. NATO Sci Ser A. Plenum Press, New York

    Google Scholar 

  • Xu D and Schulten K (1994) Coupling of protein motion to electron transfer in a photosynthetic reaction center: Investigating the low temperature behaviour in the framework of the spin-boson model. Chem Phys 182: 91–117

    CAS  Google Scholar 

  • Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 282: 163–180

    CAS  Google Scholar 

  • Yang M, Damjanović A, Vaswani HM and Fleming GR (2003) Energy transfer in Photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158

    PubMed  CAS  Google Scholar 

  • Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR and Small GJ (2002) Red antenna states of Photosystem I from cyanobacterium Synechococcus elongatus: A spectral hole burning study. Chem Phys 275: 47–59

    CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melih K. Şener or Klaus Schulten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Şener, M.K., Schulten, K. (2009). From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_15

Download citation

Publish with us

Policies and ethics