Energy Transfer from Carotenoids to Bacteriochlorophylls

  • Harry A. Frank
  • Tomáš Polívka
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 28)


The photosynthetic apparatus contains light-harvesting (LH) pigment-protein complexes that capture light energy from the sun and transfer it efficiently to the reaction center. In photosynthetic bacteria, carotenoids supplement the non-optimal LH capacity of bacteriochlorophyll (BChl) in the 400–500 nm region of the visible spectrum. Thus, carotenoid-to-BChl energy transfer provides an essential process for enhancing the ability of these systems to capture light energy and convert it into useful work. Carotenoids have at least two states involved in energy transfer to BChl. These are the S2 state into which absorption from the ground state, S0, is strongly allowed, and a low-lying, S1 state into which absorption is forbidden by symmetry. These two states represent the primary energy donors for carotenoid-to-BChl energy transfer. The S2 state transfers energy with an efficiency between 30 and 70%, the value of which is only slightly dependent on the structure of the carotenoid. The S1-mediated energy transfer pathway depends strongly on the π-electron conjugation length of the carotenoid. This route is essentially closed for carotenoids with eleven or more conjugated carbon-carbon double bonds because in these cases the S1 energy of the carotenoid lies too low to enable transfer to BChl. Besides the main S2 and S1 pathways, the past few years of investigations have raised the prospect of other carotenoid excited states participating in energy transfer. The possibilities include vibrationally hot S1 states, a state denoted S* thought to be formed by a branched deactivation pathway from S2, and a state with symmetry representation 1B u predicted on the basis of theoretical computations to lie between S1 and S2. This chapter reviews the evidence for these states and discusses their possible involvement as energy donors in the process of light-harvesting in photosynthetic bacteria.


Energy Transfer Chem Phys Purple Bacterium Conjugation Length Coulombic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


BChl a

bacteriochlorophyll a


lithium dodecyl sulfate


circular dichroism


light harvesting


reaction center


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y and Koyama Y (2004) Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem Phys Lett 393: 184–191CrossRefGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26 — the cofactors. Proc Natl Acad Sci USA 84: 5730–5734PubMedCrossRefGoogle Scholar
  3. Andersson PO, Cogdell RJ and Gillbro T. (1996) Femtosecond dynamics of carotenoid-to-bacteriochlorophyll a energy transfer in the light-harvesting antenna complexes from the purple bacterium Chromatium purpuratum. Chem Phys 210: 195–217CrossRefGoogle Scholar
  4. Angerhofer A, Cogdell RJ and Hipkins M. (1986) A spectral characterization of the light-harvesting pigment-protein complexes form Rhodopseudomonas acidophila. Biochim Biophys Acta 848: 333–341CrossRefGoogle Scholar
  5. Angerhofer A, Bornhäuser F, Gall A and Cogdell RJ (1995) Optical and optically detected magnetic-resonance investigation on purple photosynthetic bacterial antenna complexes. Chem Phys 194: 259–274CrossRefGoogle Scholar
  6. Billsten HH, Herek JL, Garcia-Asua G, Hashøj L, Polívka T, Hunter CN and Sundström V (2002a) Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. Biochemistry 41: 4127–4136CrossRefGoogle Scholar
  7. Hillsten HH, Zigmantas D, Sundström V and Polívka T (2002b) Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C=C bonds. Chem Phys Lett 355: 465–470CrossRefGoogle Scholar
  8. Billsten HH, Pan JX, Sinha S, Pascher T, Sundström V and Polívka T (2005) Excited-state processes in the carotenoid zeaxanthin after excess energy excitation. J Phys Chem A 109: 6852–6859PubMedCrossRefGoogle Scholar
  9. Cerullo G, Polli D, Lanzani G, De Silvestri S, Hashimoto H and Cogdell RJ (2002) Photosynthetic light harveting by carotenoids: Detection of an intermediate excited state. Science 298: 2395–2398PubMedCrossRefGoogle Scholar
  10. Chadwick B, Zhang C, Cogdell RJ and Frank H (1987) The effects of lithium dodecyl-sulfate and sodium-borohydride on the absorption-spectrum of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila 7750. Biochim Biophys Acta 893: 444–451CrossRefGoogle Scholar
  11. Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79PubMedGoogle Scholar
  12. Cogdell RJ, Hipkins MF, MacDonald W and Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B800–850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634: 191–202PubMedCrossRefGoogle Scholar
  13. Damjanovic A, Ritz T and Schulten K (1999) Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Phys Rev E 59: 3293–3311CrossRefGoogle Scholar
  14. Desamero RZB, Chynwat V, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Cua A, Bocian DF and Frank HA (1998) Mechanism of energy transfer from carotenoids to bacteriochlorophyll: Light-harvesting by carotenoids having different extents of π-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1. J Phys Chem B 102: 8151–8162CrossRefGoogle Scholar
  15. de Weerd FL, van Stokkum IHM and van Grondelle R (2002) Subpicosecond dynamics in the excited state absorption of all-trans β-carotene. Chem Phys Lett 354: 38–43CrossRefGoogle Scholar
  16. Frank HA (2001) Spectroscopic studies of the low-lying singlet excited electronic states and photochemical properties of carotenoids. Arch Biochem Biophys 385: 53–60PubMedCrossRefGoogle Scholar
  17. Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264PubMedCrossRefGoogle Scholar
  18. Frank HA, Chynwat V, Hartwich G, Meyer M, Katheder I and Scheer H (1993) Carotenoid triplet-state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene. Photosynth Res 37: 193–203CrossRefGoogle Scholar
  19. Frank HA, Bautista JA, Josue JS and Young AJ (2000a) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39: 2831–2837PubMedCrossRefGoogle Scholar
  20. Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharpies FP, Gosztola D and Wasielewski MR (2000b) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104: 4569–4577CrossRefGoogle Scholar
  21. Fraser NJ, Hashimoto H and Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: The story so far. Photosynth Res 70: 249–256PubMedCrossRefGoogle Scholar
  22. Fujii R, Onaka K, Kuki M, Koyama Y and Watanabe Y (1998) The 2Ag - energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chem Phys Lett 288: 847–853CrossRefGoogle Scholar
  23. Furuichi K, Sashima T and Koyama Y (2002) The first detection of the 3Ag - state in carotenoids using resonance-Raman excitation profiles. Chem Phys Lett 356: 547–555CrossRefGoogle Scholar
  24. Gall A, Gardiner AT, Cogdell RJ and Robert B (2006) Carotenoid stoichiometry in the LH2 crystal: No spectral evidence for the presence of the second molecule in the α/β-apoprotein dimer. FEBS Lett 580: 3841–3844PubMedCrossRefGoogle Scholar
  25. Georgakopoulou S, van Grondelle R and van der Zwan G (2004) Circular dichroism of carotenoids in bacterial light-harvesting complexes: Experiments and modeling. Biophys J 87: 3010–3022PubMedCrossRefGoogle Scholar
  26. Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA and van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA 98: 2364–2369PubMedCrossRefGoogle Scholar
  27. Hashimoto H, Yanagi K, Yoshizawa M, Polli D, Cerullo G, Lanzani G, De Silvestri S, Gardiner AT and Cogdell RJ (2004) The very early events following photoexcitation of carotenoids. Arch Biochem Biophys 430: 61–69PubMedCrossRefGoogle Scholar
  28. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D and Motzkus M (2002) Quantum control of energy flow in light harvesting. Nature 417: 533–535PubMedCrossRefGoogle Scholar
  29. Hsu CP, Walla PJ, Head-Gordon M and Fleming GR (2001) The role of the S1 state of carotenoids in photosynthetic energy transfer: The light-harvesting complex II of purple bacteria. J Phys Chem B 105: 11016–11025CrossRefGoogle Scholar
  30. Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597PubMedCrossRefGoogle Scholar
  31. Kosumi D, Komukai M, Hashimoto H and Yoshizawa M (2005) Ultrafast dynamics of all-trans-β-carotene explored by resonant and nonresonant photoexcitations. Phys Rev Lett 95: 213601–213604PubMedCrossRefGoogle Scholar
  32. Koyama Y, Rondonuwu FS, Fujii R and Watanabe Y (2004) Light-harvesting function of carotenoids in photosynthesis: The roles of the newly found 1Bu - state. Biopolymers 74: 2–18PubMedCrossRefGoogle Scholar
  33. Krueger BP, Scholes GD, Jimenez R and Fleming GR (1998a) Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J Phys Chem B 102: 2284–2292CrossRefGoogle Scholar
  34. Krueger BP, Scholes GD and Fleming GR (1998b) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102: 5378–5386CrossRefGoogle Scholar
  35. Krueger BP, Yom J, Walla PJ and Fleming GR (1999) Observation of the S1 state of spheroidene in LH2 by two-photon fluorescence excitation. Chem Phys Lett 310: 57–64CrossRefGoogle Scholar
  36. Larsen DS, Papagiannakis E, van Stokkum IHM, Vengris M, Kennis JTM and van Grondelle R (2003) Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption. Chem Phys Lett 381: 733–742CrossRefGoogle Scholar
  37. Lin S, Katilius E, Taguchi AKW and Woodbury NW (2003) Excitation energy transfer from carotenoid to bacteriochlorophyll in the photosynthetic purple bacterial reaction center of Rhodobacter sphaeroides. J Phys Chem B 107: 14103–14108CrossRefGoogle Scholar
  38. Lin S, Katilius E, Ilagan RP, Gibson GN, Frank HA and Woodbury NW (2006) Mechanism of carotenoid singlet excited state energy transfer in modified bacterial reaction centers. J Phys Chem B 110: 15556–15563PubMedCrossRefGoogle Scholar
  39. Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ and Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80: 923–930PubMedCrossRefGoogle Scholar
  40. McCamant DW, Kukura P and Mathies RA (2003) Femtosecond time-resolved stimulated Raman spectroscopy: Application to the ultrafast internal conversion in beta-carotene. J Phys Chem A 107: 8208–8214PubMedCrossRefGoogle Scholar
  41. McDermott G, Prince SM, Freer AA, Hawthornwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521CrossRefGoogle Scholar
  42. McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas Acidophila strain 7050. Biochemistry 40: 8783–8789PubMedCrossRefGoogle Scholar
  43. Nagae H, Kakitani T, Katoh T and Mimuro M (1993) Calculation of the excitation transfer-matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll. J Chem Phys 98: 8012–8023CrossRefGoogle Scholar
  44. Naqvi KR (1980) The mechanism of singlet-singlet excitation energy transfer from carotenoids to chlorophyll. Photochem Photobiol 31: 523–524CrossRefGoogle Scholar
  45. Niedzwiedzki DM, Sullivan JO, PolívkaT, Birge RR and Frank HA (2006) Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. J Phys Chem B 110: 22872–22885PubMedCrossRefGoogle Scholar
  46. Papagiannakis E, Kennis JTM, van Stokkum IHM, Cogdell RJ and van Grondelle R (2002) An alternative carotenoid-to-bacte-riochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc Natl Acad Sci USA 99: 6017–6022PubMedCrossRefGoogle Scholar
  47. Papagiannakis E, Das SK, Gall A, Stokkum IHM, Robert B, van Grondelle R, Frank HA and Kennis JTM (2003a) Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from Rhodobacter sphaeroides R-26.1: Excited-state relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll. J Phys Chem B 107: 5642–5649CrossRefGoogle Scholar
  48. Papagiannakis E, van Stokkum IHM, van Grondelle R, Niederman RA, Zigmantas D, Sundström V and Polívka T (2003b) A near-infrared transient absorption study of the excited-state dynamics of the carotenoid spirilloxanthin in solution and in the LH1 complex of Rhodospirillum rubrum. J Phys Chem B 107: 11216–11223CrossRefGoogle Scholar
  49. Papagiannakis E, van Stokkum IHM, Vengris M, Cogdell RJ, van Grondelle R and Larsen DS (2006a) Excited-state dynamics of carotenoids in light-harvesting complexes. 1. Exploring the relationship between the S1 and S* states. J Phys Chem B 110: 5727–5736PubMedCrossRefGoogle Scholar
  50. Papagiannakis E, Vengris M, Valkunas L, Cogdell RJ, van Grondelle R and Larsen DS (2006b) Excited-state dynamics of carotenoids in light-harvesting complexes. 2. Dissecting pulse structures from optimal control experiment. J Phys Chem B 110: 5737–5746PubMedCrossRefGoogle Scholar
  51. Papagiannakis E, Vengris M, Larsen DS, van Stokkum IHM, Hiller RG and van Grondelle R (2006c) Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. J Phys Chem B 110: 512–521PubMedCrossRefGoogle Scholar
  52. Papiz MZ, Prince SM, Howard TD, Cogdell RJ and Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: New structural features and functionally relevant motions. J Mol Biol 326: 1523–1538.PubMedCrossRefGoogle Scholar
  53. Polívka T and Sundström V (2004) Ultrafast dynamics of carotenoid excited states — From solution to natural and artificial systems. Chem Rev 104: 2021–2071PubMedCrossRefGoogle Scholar
  54. Polivka T, Herek JL, Zigmantas D, Åkerlund HE and Sundström V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917PubMedCrossRefGoogle Scholar
  55. Polivka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, KoyamaY, Fujii R and Sundström V (2001) Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105: 1072–1080CrossRefGoogle Scholar
  56. Polivka T, Zigmantas D, Herek JL, He Z, Pascher T, Pullerits T, Cogdell RJ, Frank HA and Sundström V (2002) The carotenoid S1 state in LH2 complexes of purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S1 energies, dynamics, and carotenoid radical formation. J Phys Chem B 106: 11016–11025CrossRefGoogle Scholar
  57. Polivka T, Pullerits T, Frank HA Cogdell RJ and Sundström V (2004) Ultrafast formation of a carotenoid radical in LH2 antenna complexes of purple bacteria. J Phys Chem B 108: 15398–15407CrossRefGoogle Scholar
  58. Polívka T, Niedzwiedski D,Fuciman M, Sundström V and Frank HA (2007) Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. J Phys Chem B 111: 7422–7431PubMedCrossRefGoogle Scholar
  59. Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H and Cogdell RJ (2006) Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution. Biophys J 90: 2486–2497PubMedCrossRefGoogle Scholar
  60. Rademaker H, Hoff AJ, van Grondelle R and Duysens LNM (1980) Carotenoid triplet yields in normal and deuterated Rhodospirillum rubrum. Biochim Biophys Acta 592: 240–257PubMedCrossRefGoogle Scholar
  61. Ricci M, Bradforth SE, Jimenez R and Fleming GR (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH1 and LH2 light-harvesting complexes. Chem Phys Lett 259: 381–390CrossRefGoogle Scholar
  62. Ritz T, Damjanovic A, Schulten K, Zhang JP and Koyama Y (2000) Efficient light harvesting through carotenoids. Photosynth Res 66: 125–144PubMedCrossRefGoogle Scholar
  63. Rondonuwu FS, Watanabe Y, Fujii R and Koyama Y (2003) A first detection of singlet to triplet conversion from the 1Bu - to the 3Ag state and triplet internal conversion from the 3Ag to the 3Bu state in carotenoids: dependence on the conjugation length. Chem Phys Lett 376: 292–301CrossRefGoogle Scholar
  64. Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ and Watanabe Y (2004) The role of the 1Bu - state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390: 314–322CrossRefGoogle Scholar
  65. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972PubMedCrossRefGoogle Scholar
  66. Sashima T, Nagae H, Kuki M and Koyama Y (1999) A new singlet-excited state of all-trans-spheroidene as detected by resonance-Raman excitation profiles. Chem Phys Lett 299: 187–194CrossRefGoogle Scholar
  67. Scholes GD, Harcourt RD and Fleming GR (1997) Electronic interactions in photo synthetic light-harvesting complexes: The role of carotenoids. J Phys Chem B 101: 7302–7312CrossRefGoogle Scholar
  68. Shreve AP, Trautman JK, Frank HA, Owens TG and Albrecht AC (1991). Femtosecond energy transfer processesin the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288PubMedCrossRefGoogle Scholar
  69. Tavan P and Schulten K (1987) Electronic Excitations in Finite and Infinite Polyenes. Phys Rev B 36: 4337–4358CrossRefGoogle Scholar
  70. Trautman JK, Shreve AP, Violette CA, Frank HA, Owens TG and Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800–850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 215–219PubMedCrossRefGoogle Scholar
  71. Tretiak S, Middleton C, Chernyak V and Mukamel S (2000) Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria. J Phys Chem B 104: 9540–9553CrossRefGoogle Scholar
  72. van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195Google Scholar
  73. van Grondelle R, Kramer H and Rijgersberg C (1982) Energy transfer in the B800–850-carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulatus. Biochim Biophys Acta 682: 208–215CrossRefGoogle Scholar
  74. Walla PJ, Linden PA, Hsu CP, Scholes GD and Fleming GR (2000). Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Proc Natl Acad Sci USA 97: 10808–10813PubMedCrossRefGoogle Scholar
  75. Wohlleben W, Buckup T, Herek JL, Cogdell RJ, and Motzkus M (2003) Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. Biophys J 85: 442–450PubMedCrossRefGoogle Scholar
  76. Wohlleben W, Buckup T, Hashimoto H, Cogdell RJ, Herek JL and Motzkus M (2004) Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states. J Phys Chem 108: 3320–3325Google Scholar
  77. Wohlleben W, Buckup T, Herek JL and Motzkus M (2005) Coherent control for spectroscopy and manipulation of biological dynamics. Chem Phys Chem 6: 850–857PubMedGoogle Scholar
  78. Zhang JP, Fujii R, Qian P, Inaba T, Mizoguchi T, Koyama Y, Onaka K and Watanabe Y (2000) Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S-1 state in the LH2 complexes from purple bacteria. J Phys Chem B 104: 3683–3691CrossRefGoogle Scholar
  79. Zhang JP, Inaba T, Watanabe Y and Koyama Y (2001) Partition of carotenoid-to-bacteriochlorophyll singlet-energy transfer through two channels in the LH2 complex from Rhodobacter sphaeroides G1C. Chem Phys Lett 340: 484–492CrossRefGoogle Scholar
  80. Zigmantas D, Hiller RG, Sharpies FP, Frank HA, Sundström V and Polivka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6: 3009–3016CrossRefGoogle Scholar
  81. Zigmantas D, Read EL, Mančal T, Brixner T, Gardiner AT, Cogdell RJ and Fleming GR (2006) Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex. Proc Natl Acad Sci USA 103: 12672–12677PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ConnecticutStorrsUSA
  2. 2.Institute of Physical BiologyUniversity of South BohemiaNove HradyCzech Republic
  3. 3.Biological CentreCzech Academy of SciencesCzech Republic

Personalised recommendations