Skip to main content

Application of High Performance Mass Spectrometry to Structural Analysis of Glycosaminoglycan Oligosaccharides

  • Conference paper
Applications of Mass Spectrometry in Life Safety

Abstract

Glycosaminoglycans, including those attached to core proteins of proteoglycans, are linear polyanions composed of hexuronate residues alternating with either glucosamine- or galactosamine derivatives. In galactosaminoglycans the disaccharide subunits can be modified in varying locations within the chains to a variable extent. The modification reaction of sulfation and epimerization lead to specific saccharide sequences controlling a wide range of recently recognized, pivotal functions in tissue development, homeostasis, and repair, and in tumor metastasis. To understand the biological function of galactosaminoglycans it is important to know their biosynthesis and the fine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kresse, H., Hausser, H., Schönherr, E., & Bittner, K. Biosynthesis and interactions of small chondroitin/dermatan sulphate proteoglycans. Eur. J. Clin. Chem. Clin. Biochem. 32, 259-264 (1994).

    CAS  PubMed  Google Scholar 

  2. Yamaguchi, Y., Mann, D.M., & Ruoslahti, E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346, 281-284 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Iozzo, R.V. The family of the small leucine-rich proteoglycans: key regulators of matrix as- sembly and cellular growth. Crit Rev. Biochem. Mol. Biol. 32, 141-174 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Glössl, J., Beck, M., & Kresse, H. Biosynthesis of proteodermatan sulfate in cultured hu- man fibroblasts. J. Biol. Chem. 259, 14144-14150 (1984).

    PubMed  Google Scholar 

  5. Sugahara, K. Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., & Kitagawa, H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612-620 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Götting, C., Kuhn, J., Zahn, R., Brinkmann, T., & Kleesiek, K. Molecular cloning and ex- pression of human UDP-d-Xylose:Proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 304, 517-528 (2000).

    Article  PubMed  Google Scholar 

  7. Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., & Clausen, H. Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J. Biol. Chem. 274, 26165-26171 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bai, X., Zhou, D., Brown, J.R., Crawford, B.E., Hennet, T., & Esko, J.D. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J. Biol. Chem. 276, 48189-48195 (2001).

    CAS  PubMed  Google Scholar 

  9. Kitagawa, H., Tone, Y., Tamura, J., Neumann, K.W., Ogawa, T., Oka, S., Kawasaki, T., & Sugahara, K. Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 273, 6615-6618 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Krishna, N.R., & Agrawal, P.K. Molecular structure of the carbohydrate-protein linkage region fragments from connective-tissue proteoglycans. Adv. Carbohydr. Chem. Biochem. 56, 201-234 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Kusche-Gullberg, M., & Kjellen, L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13, 605-611 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Casu, B., Petitou, M., Provasoli, M., & Sinay, P. Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. Trends Biochem. Sci. 13, 221-225 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Malmström, A., & Fransson, L.-Å. Biosynthesis of dermatan sulfate. I. Formation of L-iduronic acid residues. J. Biol. Chem. 250, 3419-3425 (1975).

    PubMed  Google Scholar 

  14. Malmström, A. Biosynthesis of dermatan sulphate. Loss of C-5 hydrogen during conversion of D-glucuronate to L-iduronate Biochem. J. 198, 669-675 (1981).

    PubMed  Google Scholar 

  15. Hannesson, H.H., Hagner-McWhirter, A., Tiedemann, K., Lindahl, U., & Malmström, A. Biosynthesis of dermatan sulphate. Defructosylated Escherichia coli K4 capsular polysaccharide as a substrate for the D-glucuronyl C-5 epimerase, and an indication of a two-base reaction mechanism Biochem. J. 313, 589-596 (1996).

    CAS  PubMed  Google Scholar 

  16. Maccarana, M. Olander, B., Malmstrom, J., Tiedemann, K., Aebersold, R., Lindahl, U., Li, J.P., & Malmstrom, A. Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J. Biol. Chem. 281, 11560-11568 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Nakao, M. Shichijo, S., Imaizumi, T., Inoue, Y., Matsunaga, K., Yamada, A., Kikuchi, M., Tsuda, N., Ohta, K., Takamori, S., Yamana, H., Fujita, H., & Itoh, K. Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J. Immunol. 164, 2565-2574 (2000).

    CAS  PubMed  Google Scholar 

  18. Mikami, T., Mizumoto, S., Kago, N., Kitagawa, H., & Sugahara, K. Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis. J. Biol. Chem. 278, 36115-36127 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bernfield, M., Götte, M, Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., & Zako, M. Functions of cell surface heparan sulfate proteoglycans Annu. Rev. Biochem. 68, 729-777 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, A., & Gallagher, J.T. Structural domains of heparan sulphate for specific recogni- tion of the C-terminal heparin-binding domain of human plasma fibronectin (HEPII). Biochem..J. 317, 871-817 (1996).

    CAS  PubMed  Google Scholar 

  21. Cella, G., Boeri, G., Saggiorato, G., Paolini, R., Luzzatto, G. & Terribile, V.I. Interaction between histidine-rich glycoprotein and platelet factor 4 with dermatan sulfate and lowmolecular-weight dermatan sulfate. Angiology. 43, 59-62 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Schönherr, E., Hausser, H., Beavan, L., & Kresse, H. Decorin-type I collagen interaction. Presence of separate core protein- binding domains. J. Biol. Chem. 270, 8877-8883 (1995).

    Article  PubMed  Google Scholar 

  23. Nareyeck, G., Seidler, D.G., Troyer, D., Rauterberg, J., Kresse, H., & Schönherr, E. Differ- ential interactions of decorin and decorin mutants with type I and type VI collagens. Eur. J. Biochem. 271, 3389-3398 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Rühland, C., Schönherr, E., Robenek, H., Hansen, U., Iozzo, R.V., Bruckner, P., Seidler, D.G. The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBS J. 274, 4246-4255 (2007).

    Article  PubMed  Google Scholar 

  25. Mascellani, G., Liverani, L., Bianchini, P., Parma, B., Torri, G., Bisio, A., Guerrini, M., & Casu, B. Structure and contribution to the heparin cofactor II-mediated inhibition of throm-bin of naturally oversulphated sequences of dermatan sulphate. Biochem. J. 296, 639-648 (1993).

    CAS  PubMed  Google Scholar 

  26. Denholm, E.M., Lin, Y.Q., & Silver, P.J. Anti-tumor activities of chondroitinase AC and chondroitinase B: inhibition of angiogenesis, proliferation and invasion. Eur. J. Pharmacol. 416, 213-221 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, P.H., Trowbridge, J.M., Taylor, K.R., Morhenn, V.B., & Gallo, R.L. Dermatan sulfate proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment. J. Biol. Chem. 279, 48640-48646 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, K.R., & Gallo, R.L. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20, 9-22 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hitchcock, A.M., Costello, C.E., & Zaia, J. Glycoform quantification of chondroitin/dermatan sulfate using a liquid chromatography-tandem mass spectrometry platform. Biochemistry 45, 2350-2361 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sirko, S., von, H.A., Wizenmann, A., Gotz, M., & Faissner, A. Chondroitin sulfate glycol- saminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134, 2727-2738 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gilbert, R.J., McKeon, R.J. Darr, A., Calabro, A., Hascall, V.C., & Bellamkonda, R.V. CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol. Cell Neurosci. 29, 545-558 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Koprivica, V., Cho, K.S., Park, J.B., Yiu, G., Atwal, J., Gore, B., Kim, J.A., Lin, E., Tessier-Lavigne, M., Chen, D.F., & He, Z. EGFR activation mediates inhibition of axon re-generation by myelin and chondroitin sulfate proteoglycans. Science 310, 106-110 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kawashima, H., Atarashi, K., Hirose, M., Hirose, J., Yamada, S., Sugahara, K., & Miyasaka, M. Oversulfated chondroitin/dermatan sulfates containing GlcAbeta1/IdoAalpha1-3GalNAc (4,6-O-disulfate) interact with L- and P- selectin and chemokines. J. Biol. Chem. 277, 12921-12930 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Penc, S.F., Pomahac, B., Winkler, T., Dorschner, R.A., Eriksson, E., Herndon, M., & Gallo, R.L. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor2 function. J. Biol. Chem. 273, 28116-28121 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Taylor, K.R., Rudisill, J.A., & Gallo, R.L. Structural and sequence motifs in dermatan sul- fate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. J. Biol. Chem. 280, 5300-5306 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Villena, J., & Brandan, E. Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. J. Cell Physiol 198, 169-178 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J., & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116-1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Steinmann, B., Royce, P., & Superti-Furga, A. The Ehlers-Danlos syndrome: In Royce, P., Steinmann, B. editors. Connective tissue and heritable disorders. 2nd edn. New York: Whiley-Liss, Inc. pp. 431-523 (2002).

    Google Scholar 

  39. Vogel, A., Holbrook, K.A., Steinmann, B., Gitzelmann, R., & Byers, P.H. Abnormal colla- gen fibril structure in the gravis form (type I) of Ehlers-Danlos syndrome. Lab Invest 40, 201-206 (1979).

    CAS  PubMed  Google Scholar 

  40. Sokolov, B.P., Prytkov, A.N., Tromp, G., Knowlton, R.G., & Prockop, D.J. Exclusion of COL1A1, COL1A2, and COL3A1 genes as candidate genes for Ehlers-Danlos syndrome type I in one large family. Hum. Genet. 88, 125-129 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Nicholls, A.C., Oliver, J.E., McCarron, S., Harrison, J.B., Greenspan, D.S., & Pope, F.M. An exon skipping mutation of a type V collagen gene (COL5A1) in Ehlers-Danlos syndrome. J. Med. Genet. 33, 940-946 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Kresse, H., Rosthoj, S., Quentin, E., Hollmann, J., Glössl, J., Okada, S., & Tonnesen, T. Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am. J. Hum. Genet. 41, 436-53 (1987).

    CAS  PubMed  Google Scholar 

  43. Quentin, E., Gladen, A., Rodèn, L., & Kresse, H. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl. Acad. Sci. USA. 87, 1342-1346 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Götte, M., Kresse, H. Defective glycosaminoglycan substitution of decorin in a patient with pro-geroid syndrome is a direct consequence of two point mutations in the galactosyltransferase I (ß4Gal-T7) gene. Biochem. Genet. 43, 67-79 (2005).

    Article  Google Scholar 

  45. Faiyaz-Ul-Haque, M., Zaidi, S.H., Al Ali, M., Al Mureikhi, M.S., Kennedy, S., Al Thani, G., Tsui, L.C., & Teebi, A.S. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am. J. Med. Genet. 128A, 39-45 (2004).

    Article  PubMed  Google Scholar 

  46. Seidler, D.G., Faiyaz-Ul-Haque, M., Hansen, U., Yip, G.W., Zaidi, S.H., Teebi, A.S., Kie- sel, L., Götte, M. Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7). J. Mol. Med. 84, 583-594 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Neame, P.J., Choi, H.U., & Rosenberg, L.C. The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J Biol Chem 264, 8653-8661 (1989).

    CAS  PubMed  Google Scholar 

  48. Zamfir, A., Seidler, D.G., Kresse, H., & Peter-Katalinic, J. Structural characterization of chondroitin/dermatan sulfate oligosaccharides from bovine aorta by capillary electrophoresis and electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 16, 2015-2024 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Calabro, A., Benavides, M., Tammi, M., Hascall, V.C., & Midura, R.J. Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology 10, 273-281 (2000a).

    Article  CAS  Google Scholar 

  50. Calabro, A., Hascall, V.C., & Midura, R.J. Adaptation of FACE methodology for micro- analysis of total hyaluronan and chondroitin sulfate composition from cartilage. Glycobiology 10, 283-293 (2000b).

    Article  CAS  Google Scholar 

  51. Seidler, D.G., Breuer, E., Grande-Allen, K.J., Hascall, V.C., & Kresse, H. Core protein de- pendence of epimerization of glucuronosyl residues in galactosaminoglycans. J. Biol. Chem. 277, 42409-42416 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Zamfir, A., Seidler, D.G., Kresse, H., & Peter-Katalinic, J. Structural investigation of chondro- itin/ dermatan sulfate oligosaccharides from human skin fibroblast decorin. Glycobiology 13, 733-742 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Zamfir, A., Seidler, D.G., Schönherr, E., Kresse, H., & Peter-Katalinic, J. On-line sheath- less capillary electrophoresis/nanoelectrospray ionization-tandem mass spectrometry for the analysis of glycosaminoglycan oligosaccharides. Electrophoresis 25, 2010-2016 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z., Xie, J., Zhang, F., & Linhardt, R.J. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal. Biochem. 371, 118-120 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Laremore, T.N., & Linhardt, R.J. Improved matrix-assisted laser desorp tion/ionization mass spectrometric detection of glycosaminoglycan disaccharides as cesium salts. Rapid Commun Mass Spectrom. 21, 1315-1320 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Hitchcock, A.M., Yates, K.E., Shortkroff, S., Costello, C.E., & Zaia, J. Optimized extrac- tion of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 17, 25-35 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Zaia, J., Miller, M.J., Seymour, J.L., & Costello, C.E. The role of mobile protons in nega- tive ion CID of oligosaccharides. J. Am. Soc. Mass Spectrom. 18, 952-960 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Miller, M.J., Costello, C.E., Malmström, A., & Zaia, J. A. tandem mass spectrometric ap- proach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms. Glycobiology 16, 502-513 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Schenauer, M.R., Yu, Y., Sweeney, M.D., & Leary, J.A. CCR2 chemokines bind selectively to acetylated heparan sulfate octasaccharides. J Biol Chem. 282, 25182-25188 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Wolff, J.J., Chi, L., Linhardt, R.J., & Amster, I.J. Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal Chem. 79, 2015-2022 (2007b).

    Article  CAS  Google Scholar 

  61. Wolff, J.J., Amster, I.J., Chi, L., & Linhardt, R.J. Electron detachment dissociation of gly-cosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 18, 234-244 (2007a).

    Article  CAS  Google Scholar 

  62. Seidler, D.G., & Dreier, R. Decorin and its glycosaminoglycan chain: regulator for cellular function. IUBMB Life submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Seidler, D.G. (2008). Application of High Performance Mass Spectrometry to Structural Analysis of Glycosaminoglycan Oligosaccharides. In: Popescu, C., Zamfir, A.D., Dinca, N. (eds) Applications of Mass Spectrometry in Life Safety. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8811-7_7

Download citation

Publish with us

Policies and ethics