Skip to main content

A linked hydrodynamic and water quality model for the Salton Sea

  • Conference paper
The Salton Sea Centennial Symposium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 201))

Abstract

A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO −34 , NO −13 and NH +14 , DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented.

Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife, and People, 1905–2005, held in San Diego, California, USA, March 2005

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalderink, R. H., L. Lijklema, J. Breukelman, W. Vanraaphorst & A. G. Brinkman, 1985. Quantification of wind induced resuspension in a shallow lake. Water Science and Technology 17:903–914.

    Google Scholar 

  • Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan & S. A. Gherini, 1985. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, 2nd Edn. U.S. EPA, EPA 600-3-85-040.

    Google Scholar 

  • Carpelan, L. H., 1958. The Salton Sea. Physical and chemical characteristics. Limnology and Oceanography 3: 373–386.

    Google Scholar 

  • Chapra, S. C., 1997, Surface Water-Quality Modeling. McGraw-Hill Companies, Inc., Singapore.

    Google Scholar 

  • Cloern, J. E., B. E. Cole & R. S. Oremland, 1983. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologica 105: 195–206.

    Article  CAS  Google Scholar 

  • Cook, C. B., 2000. Internal dynamics of terminal basin lake: a numerical model for management of the Salton Sea. PhD Dissertation, University of California, Davis, USA.

    Google Scholar 

  • Cook, C. B., G. T. Orlob & D. W. Huston, 2002. Simulation of wind-driven circulation in the Salton Sea: implications for indigenous ecosystems. Hydrobiologia 473: 59–75.

    Article  Google Scholar 

  • Cooper, J. J. & D. L. Koch, 1984. Limnology of a desertic terminal lake, Walker Lake, Nevada, U.S.A. Hydrobiologia 118: 275–292.

    Google Scholar 

  • Galat, D. L., E. L. Lider, S. Vigg & S. R. Robertson, 1981. Limnology of a large, deep, North American terminal lake, Pyramid Lake, Nevada, U.S.A. Hydrobiologia 82: 281–317.

    Google Scholar 

  • Hakanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, New York.

    Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.

    Article  Google Scholar 

  • Hamilton, D. P. & S. G. Schladow, 1997. Prediction of water quality in lakes and reservoirs. 1. Model description. Ecological Modelling 96: 91–110.

    Article  CAS  Google Scholar 

  • Heald, P. C., S. G. Schladow, J. E. Reuter & B. Allen, 2005. Modeling MTBE and BTEX in lakes and reservoirs used for recreational boating. Environmental Science and Technology 39: 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, D. B., 1998, Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. International Journal of Salt Lake Research 7: 261–274.

    Google Scholar 

  • Holdren, G. C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.

    Article  CAS  Google Scholar 

  • Imboden, D. M., 1974. Phosphorus model of lake eutrophication. Limnology and Oceanography 19: 297–304.

    CAS  Google Scholar 

  • Jellison, R., L. G. Miller, J. M. Melack & G. L. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnology and Oceanography 38: 1020–1039.

    CAS  Google Scholar 

  • Jorgensen, S. E. & G. Bendoricchio, 2001. Fundamentals of Ecological Modelling. Elsevier Science Ltd., Amsterdam. 526 p.

    Google Scholar 

  • Kristensen, P., M. Sondergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.

    Article  CAS  Google Scholar 

  • Lehman, J. T., D. B. Botkin & G. E. Likens, 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnology and Oceanography 20: 343–364.

    Google Scholar 

  • Losada, J. P., 2001. A deterministic model for lake clarity; application to management of Lake Tahoe (California-Nevada), USA. PhD dissertation, University of Girona, Spain.

    Google Scholar 

  • Luettich, R. A., D. R. F. Harleman & L. Somlyody, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.

    Google Scholar 

  • McCord, S. A. & S. G. Schladow, 1998. Numerical simulations of degassing scenarios for CO2-rich Lake Nyos, Cameroon. Journal of Geophysical Research—Solid Earth, 103(B6): 12355–12364.

    Article  CAS  Google Scholar 

  • McCord, S. A., S. G. Schladow & T. G. Miller, 2000. Modeling artificial aeration kinetics in ice covered lakes. Journal of Environmental Engineering-ASCE 126: 21–31.

    Article  CAS  Google Scholar 

  • Nagid, E. J., D. E. Canfield & M. V. Hoyer, 2001. Wind-induced increases in trophic state characteristics of a large (27 km(2)), shallow (1.5 m mean depth) Florida lake. Hydrobiologia 455: 97–110.

    Article  CAS  Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris.

    Google Scholar 

  • Osgood, R. A., 1988. Lake mixis and internal phosphorous dynamics. Archiv Für Hydrobiologie 113: 629–638.

    CAS  Google Scholar 

  • Reddy, K. R., M. M. Fisher & D. Ivanoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality 25: 363–371.

    Article  CAS  Google Scholar 

  • Robertson, D. M. & S. G. Schladow, 2008. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: an empirical modeling approach. Hydrobiologia (this issue).

    Google Scholar 

  • Robertson, D. M., S. G. Schladow & G. C. Holdren, 2008. Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California. Hydrobiologia (this issue).

    Google Scholar 

  • Romero, J. R., I. Kagalou, J. Imberger, D. Hela, M. Kotti, A. Bartzokas, T. Albanis, N. Evmirides, S. Karkabounas, J. Papagiannis & A. Bithava, 2002. Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia 474: 91–105.

    Article  CAS  Google Scholar 

  • Schladow, S. G. & D. P. Hamilton, 1997. Prediction of water quality in lakes and reservoirs. 2. Model calibration, sensitivity analysis and application. Ecological Modelling 96: 111–123.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., 1991. Biogeochemistry, an Analysis of Global Change. Academic Press, Inc., London, 443 p.

    Google Scholar 

  • Somlyody, L., 1986. Wind induced sediment resuspension in shallow lakes. In Bhra, T. F. E. C. (ed.), Water Quality Modelling in the Inland Natural Environment. The Fluid Engineering Centre, 28–298.

    Google Scholar 

  • Somlyody, L. & G. van Straten, 1986. Modeling and Managing Shallow Lake Eutrophication with Application to Lake Balaton. Springer-Verlag, New York.

    Google Scholar 

  • Sondergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.

    Article  Google Scholar 

  • State of California Resources Agency, 2006. Salton sea ecosystem restoration program draft programmatic environmental impact report. State Clearinghouse # 2004021120.

    Google Scholar 

  • Stephens, D. W. & D. M. Gillespie, 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography 21: 74–87.

    Article  CAS  Google Scholar 

  • Tõnno, I. & T. Nõges, 2003. Nitrogen fixation in a large shallow lake: rates and initiation conditions. Hydrobiologia 490: 23–30.

    Article  Google Scholar 

  • U.S. EPA, 2000. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs. Report no. EPA-822-B00-001, Washington, DC, variously paginated.

    Google Scholar 

  • Walker, W. W., 1986. Empirical Methods for Predicting Eutrophication in Impoundments; Report 3, Phase III: Applications Manual. Technical Report E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Watts, J. M., B. K. Swan, M. A. Tiffany & S. H. Hurlbert, 2001. Thermal, mixing, and oxygen regimes of the Salton Sea, California, 1997–1999. Hydrobiologia 466: 159–176.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd Edn. Academic Press, San Diego, 1006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Geoffrey Schladow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Chung, E.G., Schladow, S.G., Perez-Losada, J., Robertson, D.M. (2008). A linked hydrodynamic and water quality model for the Salton Sea. In: Hurlbert, S.H. (eds) The Salton Sea Centennial Symposium. Developments in Hydrobiology, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8806-3_5

Download citation

Publish with us

Policies and ethics