Laboratory studies on the coprecipitation of phosphate with calcium carbonate in the Salton Sea, California

  • I. R. Rodriguez
  • C. Amrhein
  • M. A. Anderson
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 201)


The Salton Sea is a hypereutrophic, saline lake in the desert of southern California. Like many lakes, the primary productivity of the Sea is limited by phosphorus. However, unlike most lakes, the release of P from the sediments is not controlled by the reductive dissolution of Fe(III)-oxide minerals. Most of the iron in the sediments of the Salton Sea is present as Fe(II)-sulfides and silicates. Rather, the sediments are dominated by calcite which is actively precipitating due to alkalinity production via sulfate reduction reactions. We hypothesized that calcite could be an important sink for phosphorus released from the decomposing organic matter. In this work we evaluated the potential for phosphate to coprecipitate with calcite formed in simulated Salton Sea sediment pore water. At calcite precipitation levels and P concentrations typical for the Salton Sea pore water, coprecipitation of P removed 82–100% of the dissolved phosphorus. The amount of P incorporated into the calcite was independent of temperature. The results of this work indicate that the internal loading of P within the Salton Sea is being controlled by calcite precipitation. Management of external P loading should have an immediate impact on reducing algae blooms in the Salton Sea.


Phosphorus Calcite precipitation Adsorption Internal loading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein, C., J. J. Jurinak & W. M. Moore, 1985. Kinetics of calcite dissolution as affected by carbon dioxide partial pressure. Soil Science Society of America Journal 49: 1393–1398.Google Scholar
  2. Anderson, M. A., 2004. Impacts of metal salt addition on water chemistry of Lake Elsinore, California: 2. Calcium salts. Lake and Reservoir Management 20: 270–279.CrossRefGoogle Scholar
  3. Anderson, M. A., L. Whiteaker, E. Wakefield & C. Amrhein. 2007. Properties and distribution of sediment in the Salton Sea, California. Hydrobiologia (this issue).Google Scholar
  4. Carreira, J. A., B. Vinegla & K. Lajtha, 2006. Secondary CaCO3 and precipitation of P−Ca compounds control the retention of soil P in arid ecosystems. Journal of Arid Environments 64: 460–473.CrossRefGoogle Scholar
  5. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth. 1993. Restoration and Management of Lakes and Reservoirs. Lewis Publishers, New York.Google Scholar
  6. Danen-Louwerse, H. J., L. Lijklema & M. Coenratts, 1995. Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Research 29: 1781–1785.CrossRefGoogle Scholar
  7. deKoff, J., M. A. Anderson & C. Amrhein, 2007. Geochemistry of iron in the Salton Sea, California. Hydrobiologia (this issue).Google Scholar
  8. Dittrich, M., T. Dittrich, I. Sieber & R. Koschel, 1997. A balance analysis of phosphorus elimination by artificial calcite precipitation in a stratified hardwater lake. Water Research 31: 237–248.CrossRefGoogle Scholar
  9. Doner, H. E. & W. C. Lynn, 1989. Carbonate, halide, sulfate, and sulfide minerals, Chap. 6. In: Dixon, J. B. & S. B. Weed (eds), Minerals in the Soil Environment. Soil Science Society America, Madison, WI: 279–330.Google Scholar
  10. Drever, J. I., 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall Publisher, New Jersey, 436 pp.Google Scholar
  11. Griffin, R. A. & J. J. Jurinak, 1973. The interaction of phosphate with calcite. Soil Science Society of America Proceedings 37: 847–850.CrossRefGoogle Scholar
  12. Hieltjes, A. H. M. & L. Lijklema, 1979. Nalevering van fosfaat door sedimenten (III): interactie van fosaat in sedimenten en poriënwater. (In Dutch) H2O 12: 599–602.Google Scholar
  13. Holdren, G. C. & A. Montaño, 2002. Chemical and physical characteristics of the Salton Sea, California. Hydrobiologia 473: 1–21.CrossRefGoogle Scholar
  14. Horne, A. J. & C. R. Goldman, 1994. Limnology, 2nd Edn. McGraw-Hill, New York, 576 pp.Google Scholar
  15. House, W. A., 1987. Inhibition of calcite crystal growth by inorganic phosphate. Journal of Colloid and Interface Science 119: 505–511.CrossRefGoogle Scholar
  16. House, W. A., 1990. The prediction of phosphate coprecipitation with calcite in freshwaters. Water Research 24: 1017–1023.CrossRefGoogle Scholar
  17. House, W. A., 1999. The physico-chemical conditions for the precipitation of phosphate with calcium. Environmental Technology 20: 727–733.CrossRefGoogle Scholar
  18. House, W. A. & L. Donaldson, 1986. Adsorption and coprecipitation of phosphate on calcite. Journal of Colloid and Interface Science 112: 309–324.CrossRefGoogle Scholar
  19. Kleiner, J., 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modeling phosphorus removal with calcite in Lake Constance. Water Research 22: 1259–1265.CrossRefGoogle Scholar
  20. Kleiner, J., 1990. Calcite precipitation—regulating mechanisms in hardwater lakes. International Association of Theoretical and Applied Limnology 24: 136–139.Google Scholar
  21. Mucci, A. & J. W. Morse, 1983. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochemica, et Cosmochimica Acta 47: 217–233.CrossRefGoogle Scholar
  22. Oza, H. I., 2003. Nutrient levels and phytoplankton abundance in Canyon Lake and Lake Elsinore, CA. M.S. Thesis. University of California, Riverside, CA.Google Scholar
  23. Selig, U., H. Baudler, M. Krech & G. Nausch, 2006. Nutrient accumulation and nutrient retention in coastal waters— 30 years investigation in the Darss-Zingst Bodden chain. Acta Hydrochimica et Hydrobiologica 34: 9–19.CrossRefGoogle Scholar
  24. Stumm, W. & J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edn. John Wiley & Sons, Inc., New York.Google Scholar
  25. Sondergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 409: 145–152.CrossRefGoogle Scholar
  26. Souchu, P., A. Gasc, Y. Collos, A. Vaquer, H. Tournier, B. Bibent & J. M. Deslous-Pauli, 1998. Biogeochemical aspects of bottom anoxia in a Mediterranean lagoon (Thau, France). Marine Ecology—Progress Series 164: 125–146.CrossRefGoogle Scholar
  27. Swan, B. K., J. M. Watts, K. M. Reifel & S. H. Hurlbert, 2007. Role of the polychaete Neanthes succinea in phosphorus regeneration from sediments in the Salton Sea, California. Hydrobiologia 576: 111–125.CrossRefGoogle Scholar
  28. Wardlaw, G. D. & D. L. Valentine, 2005. Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton Sea, California. Hydrobiologia 533: 77–85.CrossRefGoogle Scholar
  29. Watts, J. M., B. K. Swan, M. A. Tiffany & S. H. Hurlbert, 2001. Thermal, mixing, and oxygen regimes of the Salton Sea, California, 1997–1999. Hydrobiologia 466: 159–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • I. R. Rodriguez
    • 1
  • C. Amrhein
    • 1
  • M. A. Anderson
    • 1
  1. 1.Department of Environmental SciencesUniversity of California, RiversideRiversideUSA

Personalised recommendations