Skip to main content

The Status of Biological Control of Plant Diseases in Soilless Cultivation

  • Chapter
  • First Online:
Book cover Recent Developments in Management of Plant Diseases

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 1))

Abstract

Avoidance of plant diseases has been a major driver for the development of soilless cultivation systems. Nevertheless, diseases still occur in these systems and the need for additional control measures exist. Traditionally, control has relied on the use of chemical fungicides but environmental pressure to reduce chemical usage in the environment, and fewer active ingredients registered for use, has stimulated the development of biological methods of disease control. One approach has been to utilise microbial inoculants as straight replacements for chemical pesticides and some commercial products are now available. Sufficient root colonization and activity are key issues for effective biocontrol. Another approach has been to create growing systems with improved suppressiveness towards plant diseases. The challenge is to combine the available strategies into environmentally and economically sound soilless plant production systems with low risks for pathogen outbreaks. Soilless systems have the potential of creating a balance between a pathogen-free start and a suppressive microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabouvette C, Rouxel F, Louvet J (1979) Characteristics of Fusarium wilt-suppressive soils and prospects for their utilization in biological control. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic, New York, pp 165–182

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York, p 467

    Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Berkelmann B (1992) Characterisierung der Bakterienflora und des antagonistischen Potentials in der zirkulierenden Nährlösung einer Tomatenkultur (Lysopersicon esculatum MILL) in Steinwolle. Geisenheimer Berichte Band 10, p 119

    Google Scholar 

  • Bolton HJ, Fredrickson JK, Elliot LF (1992) Microbial ecology of the rhizosphere. In: Metting FB (ed) Soil microbial ecology: application in agriculture and environmental management. Marcel Dekker, New York, pp 27–63

    Google Scholar 

  • Calvo-Bado LA, Petch G, Parsons NR, Morgan JAW, Pettitt TR, Whipps JM (2006) Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems. J Appl Microbiol 100:1194–1207

    Article  CAS  PubMed  Google Scholar 

  • De Jonghe K (2006) Control of Phytophthora spp. by means of (bio)surfactant-producing Pseudomonas spp. Ph.D. Thesis, University Gent, Belgium, pp 87–114

    Google Scholar 

  • De Jonghe K, Hermans D, Höfte M (2007) Efficacy of alcohol alkoxylate surfactants differing in the molecular structure of the hydrophilic portion to control Phytophthora nicotianae in tomato substrate culture. Crop Prot 26:1524–1531

    Article  Google Scholar 

  • Déniel F, Rey P, Chérif M, Guillou A, Tirilly Y (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Canadian Journal of Microbiology 50:499–508

    Article  PubMed  Google Scholar 

  • De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  Google Scholar 

  • Ehret DL, Alsanius B, Wohanka W, Menzies JG, Utkhede R (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21:323–339

    Article  Google Scholar 

  • Folman LB (2003) Biological control of Pythium aphanidermatum in soilless systems: selection of biocontrol agents and modes of action. Ph.D. Thesis, University of Leiden, The Netherlands, pp 123–143

    Google Scholar 

  • Folman LB, Postma J, Van Veen JA (2003) Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiol Res 158:107–115

    Article  CAS  PubMed  Google Scholar 

  • Folman LB, De Klein MJEM, Postma J, van Veen JA (2004) Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol Control 31:145–154

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annual Review of Phytopathology 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 101:475–481

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hunter PJ, Petch GM, Calvo-Bado LA, Pettitt TR, Parsons NR, Morgan JAW, Whipps JM (2006) Differences in microbial activity and microbial populations of peat associated with suppression of damping-off disease caused by Pythium sylvaticum. Appl Environ Microbiol 72:6452–6460

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Khalil S, Alsanius BW (2001) Dynamics of the indigenous microflora inhabiting the root zone and the nutrient solution of tomato in a commercial closed greenhouse system. Gartenbauwissenschaft 66:188–198

    Google Scholar 

  • Koohakan P, Ikeda H, Jeanaksorn T, Tojo M, Kusakari SI, Okada K, Sato S (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems. Scientia Horticulturae 101:179–188

    Article  Google Scholar 

  • McPherson G.M (1998) Root diseases in hydroponics - their control by disinfection and evidence for suppression in closed systems. In: Proceedings of 7th international congress of plant pathology, Edinburgh, pp 3.8.1S

    Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol. 103–133

    Google Scholar 

  • Postma J, Luttikholt AJG (1996) Colonization of carnation stems by a nonpathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f.sp. dianthi. Can J Botani 74:1841–1851

    Google Scholar 

  • Postma J, Willemsen-De Klein MJEIM, Van Elsas JD (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90:125–133

    Article  CAS  PubMed  Google Scholar 

  • Postma J, Alsanius BW, Whipps JM, Wohanka W (2003) La microflora nei sistemi di coltivazione fuori suolo. Informatore Fitopathligico 3:35–39

    Google Scholar 

  • Postma J, Geraats BPJ, Pastoor R, Van Elsas JD (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–818

    Article  CAS  PubMed  Google Scholar 

  • Postma JV, Os EA, Bonants PJM (2008) Microbial and phytopathological aspects in closed growing systems. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, Amsterdam, pp 425–457

    Chapter  Google Scholar 

  • Postma J, Stevens LH, Wiegers GL, Davelaar E, Nijhuis EH (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biological Control 48:301–309

    Article  Google Scholar 

  • Rattink H (1996) Root pathogens in modern cultural systems: assessment of risks and suggestions for integrated control. IOBC wprs Bullet 19:1–10

    Google Scholar 

  • Rattink H, Postma J (1996) Biological control of fusarium wilt in carnations on a recirculation system by a nonpathogenic Fusarium oxysporum isolate. Med. Fac. Landbouww. Univ. Gent 61/2b, pp 491–498

    Google Scholar 

  • Raviv M, Lieth JH (2008) Significance of soilless culture in agriculture. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, Amsterdam, pp 1–11

    Chapter  Google Scholar 

  • Sharma VK, Nowak J (1998) Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536

    Article  CAS  Google Scholar 

  • Sid Ahmed A, Ezziyyani M, Pérez Sánchez C, Candela ME (2003) Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109:633–637

    Article  CAS  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants; their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:19–27

    Article  Google Scholar 

  • Stanghellini ME, Rasmussen SL (1994) Hydroponics: a solution for zoosporic pathogens. Plant Dis 78:1129–1138

    Article  Google Scholar 

  • Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlof J, Malandrakis AA, Paplomatas EJ, Ramert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477

    Article  CAS  Google Scholar 

  • Tu JC, Papadopoulos AP, Hao X, Zheng J (1999) The relationship of a pythium root rot and rhizosphere microorganisms in a closed circulating and an open system in stone wool culture of tomato. Acta Horticulturae 481:577–583

    Google Scholar 

  • Validov S (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. Ph.D. Thesis, University Leiden, The Netherlands, pp 123–134

    Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f.sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    Article  CAS  PubMed  Google Scholar 

  • Van Der Gaag DJ, Wever G (2005) Conduciveness of different soilless growing media to Pythium root and crown rot of cucumber under near-commercial conditions. Eur J Plant Pathol 112:31–41

    Article  Google Scholar 

  • Van Os EA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39:105–112

    Google Scholar 

  • Van Os EA, Postma J, Bruins M, Willemsen-de Klein MJEIM (2004a) Investigations on crop developments and microbial suppressiveness of Pythium aphanidermatum after different disinfection treatments of the circulating nutrient solution. Acta Horticulturae 644:563–570

    Google Scholar 

  • Van Os EA, Postma J, Pettitt TR, Wohanka W (2004b) Microbial optimisation in soilless cultivation: a replacement for methyl bromide. Acta Horticulturae 635:47–58

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopathol 40:309–348

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Botany 52:487–511

    CAS  Google Scholar 

  • Wohanka W, Lüdtke H, Ahlers H, Lübke M (1999) Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Horticulturae 481:539–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joeke Postma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Postma, J. (2010). The Status of Biological Control of Plant Diseases in Soilless Cultivation. In: Gisi, U., Chet, I., Gullino, M. (eds) Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8804-9_11

Download citation

Publish with us

Policies and ethics