Skip to main content

Magnetotransport Properties of Copper Ternaries: New Solar Cells Materials

  • Conference paper

Abstract

Ever since the first solar cell was developed by Bell Laboratories, new materials are being investigated that could yield solar energy conversion efficiency comparable in device production cost to the standard electric power generators. Continuing with this effort, in recent years solar cells with efficiency close to 20% prepared with alloys of CuIn1-xGaxSe2 has been reported. On the other hand, it is, suggested that n-CuIn3Se5 combined with p-CuInSe2 could play an important role in the optimization of solar cells based on Cu-ternaries. In addition to their technological importance, these compounds are also of academic interest. Because of the presence of shallow donor and acceptor levels due to the presence of cation-cation disorders in Cu(In,Ga)Se2 and ordered defects in Cu(In,Ga)3 (Se,Te)5, the impurity band in these compounds starts to form between liquid helium and nitrogen temperatures. This permits to study the variable range hopping (VRH) conduction in the impurity band over a much wider temperature range. In the case of Mott type VRH, the electrical resistivity follows the relation ρ = ρ̥exp (T̥ /T)1/4, where ρ̥ pis the pre-exponential factor and Tρ is the characteristic temperature. In this paper we report on a comparative study of the variation of electrical resistivity over a wide temperature range at different magnetic field values in single crystals of CuInSe2, CuInTe2, CuGaTe2, CuIn3Se5, CuIn3Te5 and CuGa3Te5. Results related to the variable range hopping and metallic conduc-tion mechanisms are discussed. The magnetoresistance data of n–CuInSe2 in the variable range and p–CuGaTe2 in the metallic regimes, measured in pulsed magnetic field up to 25 T between 2 and 300 K are analyzed and compared with the existing theoretical models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25, 676 (1954).

    Article  CAS  ADS  Google Scholar 

  2. J.L. Stone, Phys. Today, 22-29, September (1993).

    Google Scholar 

  3. A. Rockett, R.W. Birkmire, J. Appl. Phys. 70(7), R81 (1991).

    Article  CAS  ADS  Google Scholar 

  4. C.H. Champness, J. Mater. Sci.: Mater. Electronics 10, 605 (1999).

    Article  CAS  Google Scholar 

  5. M.A. Conteras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt: Res. Appl. 7, 311 (1999).

    Article  Google Scholar 

  6. M.A. Conteras, K. Ramanathan, J. Abushama, F. Hasoon, D. Young, B. Egaas, R. Noufi, Prog. Photovolt 13, 209 (2005).

    Article  CAS  Google Scholar 

  7. D. Rudman, F.J. Haug, M. Kaelin, H. Zogg, A.N. Tiwari, G. Belger, Mat. Res. Soc. Symp. Proc. 668, H3.8.1 (2001).

    Google Scholar 

  8. S.M. Wasim, C. Rincon, G. Marin, Phys. Stat. Sol. (a) 194, 244 (2002).

    Article  CAS  Google Scholar 

  9. S.M. Wasim, Sol. Cell. 16, 289 (1986).

    Article  CAS  Google Scholar 

  10. B.I. Alt’shuler, A.G. Aronov, D.E. Khmel’nitskii, JETP Lett. 36, 195 (1982).

    ADS  Google Scholar 

  11. A. Kawabata, Solid State Comm. 34, 431 (1980).

    Article  CAS  ADS  Google Scholar 

  12. E. Arushanov, L. Essaleh, J. Galibert, J. Léotin M.A. Arsene, J.P. Peyrade and S. Askenazy, Appl. Phys. Lett. 61, 958 (1992).

    Article  CAS  ADS  Google Scholar 

  13. E. Arushanov, L. Essaleh, J. Galibert, J. Léotin and S. Askenazy, Physica B 184, 229 (1993).

    Article  CAS  ADS  Google Scholar 

  14. B.I. Shklovskii and A.L. Efros, Springer, Berlin (1984).

    Google Scholar 

  15. V.L. Nguyen, B.Z. Spivak and B.I. Shklovskii, Sov. Phys.-JETP 62, 1021 (1985).

    Google Scholar 

  16. U. Sivan, Entin-Wohllman and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).

    Google Scholar 

  17. S.M. Wasim, C. Rincon, J.M. Delgado and G. Marin, J. Phys. Chem. Solids 66, 1990-1993 (2005).

    Article  CAS  ADS  Google Scholar 

  18. S.B. Zhang, S.H. Wei, A. Zunger, H.K. Yoshida, Phys. Rev. B 57, 9642-9656 (1998).

    Article  CAS  ADS  Google Scholar 

  19. L. Essaleh, S.M. Wasim, J. Galibert, Mat. Lett. 66, 1947 (2006).

    Article  CAS  Google Scholar 

  20. S.M. Wasim, L. Essaleh and G. Marin. American Institute of Physics, Low Temperature Physics: 24th International Conference on Low Temperature Physics. Edited by Y. Takano, S.P. Hirchfield, S.O. Hill, P.J. Hirchfield and A.M. Goldmann, pp. 1468-1469 (2006).

    Google Scholar 

  21. B. Gudden and W. Schottky, Z. Tech. Phys. 16, 323 (1935).

    Google Scholar 

  22. A. Miller and S. Abrahams, Phys. Rev. 120, 745 (1960).

    Article  MATH  CAS  ADS  Google Scholar 

  23. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).

    Article  CAS  ADS  Google Scholar 

  24. A.L. Efros and B.I. Shklovskii, J. Phys. C8, L49 (1975).

    ADS  Google Scholar 

  25. O. Entin-Wohlman, Y. Imry and U. Sivan, Phys. Rev. B 40, 8342 (1989).

    Article  ADS  Google Scholar 

  26. W. Schirmacher, Phys. Rev. B 41, 2461 (1990).

    Article  ADS  Google Scholar 

  27. M.E. Raikh, Solid State Comm. 75, 935 (1990).

    Article  CAS  ADS  Google Scholar 

  28. B. Movaghar, Phys. Stat. Sol. (b) 97, 533 (1980).

    Article  CAS  Google Scholar 

  29. G. Bergman, Phys. Rev. B 28, 2917 (1983).

    ADS  Google Scholar 

  30. Y. Isawa, J. Phys. Soc. Jap. 53, 2865 (1984); J. Phys. Soc. Jap. 53, 1415 (1984).

    Google Scholar 

  31. L. Essaleh, S.M. Wasim, G. Marin, E. Choukri and J. Galibert, Phys. Stat. Sol. (b), 225, 203 (2001).

    Article  CAS  ADS  Google Scholar 

  32. L. Essaleh, J. Galibert , S.M. Wasim and G. Marin, Phys. Stat. Sol. (b), 240, 625 (2003).

    Google Scholar 

  33. L. Essaleh, S.M. Wasim and J. Galibert, J. Appl. Phys. 90, 3993 (2001).

    Article  CAS  ADS  Google Scholar 

  34. B.L. Alt’shuler, A.G. Aronov, A.I. Larkin and D.E. Klmel’nitskii, Sov. Phys. JETP 54, 411 (1981).

    Google Scholar 

  35. W.L. Mclean and T. Tsuzuki, Phys. Rev. B. 29, 503 (1984).

    Article  ADS  Google Scholar 

  36. J.C. Ousset, S. Askenazy, H. Rakoto and J.M. Broto, J. Physique 46, 2145 (1985).

    Article  CAS  Google Scholar 

  37. P.A. Lee and T.V. Ramakrishnan, Phys. Rev. B 26, 4009 (1982).

    Article  ADS  Google Scholar 

  38. L. Essaleh, J. Galibert, S.M. Wasim, and J. Léotin, Phys. Stat. Sol. (b), 177, 449 (1993).

    Article  CAS  Google Scholar 

  39. J.B. Bieri, A. Fert, G. Creuzet, and J.C. Ousset, Sol. Stat. Commun. 49, 849 (1984).

    Article  CAS  ADS  Google Scholar 

  40. L. Essaleh and S.M. Wasim, Mat. Lett. 61, 2491 (2007).

    Article  CAS  Google Scholar 

  41. L. Essaleh, J. Galibert, S.M. Wasim, E. Hernandez and J. Léotin, Phys. Rev. B 50, 18040 (1994).

    Article  CAS  ADS  Google Scholar 

  42. F. Tremblay, M. Pepper, D. Richie, D.C. Peacock, J.E.F. Frost and G.A.C. Jones, Phys. Rev B 39, 8059 (1989).

    Article  CAS  ADS  Google Scholar 

  43. Y. Zhang, P. Dai, M. Levy and M.P. Sarachik, Phys. Rev. Lett. 64, 2687 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Essaleh, L., Wasim, S.M. (2008). Magnetotransport Properties of Copper Ternaries: New Solar Cells Materials. In: Luk'yanchuk, I.A., Mezzane, D. (eds) Smart Materials for Energy, Communications and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8796-7_9

Download citation

Publish with us

Policies and ethics